

Linux Vendor Firmware Service

Contents:

	Introduction
	The Problem

	System Architecture

	GNOME Software

	fwupd

	LVFS

	Conclusions

	Getting an Account
	Information to Supply

	Vendor Groups

	Export Control

	End User License Agreements

	Alternate Branches

	Metadata
	MetaInfo Files

	Using GUIDs

	AppStream ID

	Update Category

	Update Protocol

	Device Integrity

	Version Format

	Device Flags

	Adding Restrictions

	Source Requirements

	Component Tags

	Device Icons

	Composite Hardware

	Further Details

	Screenshots

	Generic Components

	Style Guide

	Uploading Firmware
	Creating a Cabinet Archive

	Signing The Archive

	Remotes

	Affiliated Vendors

	Automatic Uploads

	Firmware Testing
	Online Tests

	End-to-End testing

	Claims
	UEFI Shell

	Old Microcode

	Computrace

	EDK Debug Agent

	HP Sure Start

	Intel BIOS Guard

	Intel Boot Guard

	Software Bill of Materials

	User Telemetry
	Vendor Summary

	Known Issues

	Custom Protocol
	Intellectual Property Concerns

	Depending on a new library

	Building fwupd

	Security
	UEFI UpdateCapsule

	Privacy Report
	Scope

	Who is responsible for this policy?

	Fair and lawful processing

	Accuracy and relevance

	Your personal data

	Data security

	Subject Access Requests

	Processing data

	GDPR Provisions

	Transparency of data protection

	Consent

	Data portability

	Right to be forgotten

	Privacy by design and default

	Data audit and register

	Reporting breaches

	Monitoring

	Consequences of Failing to Comply

	Offline Firmware
	Deploy in immutable image

	Mirror the public firmware

	Export a shared directory

	Downloading manually

	Create your own LVFS

	Product Certification
	Introduction

	Requirements

	Conclusion

	LVFS Releases
	1.5.2 (2024-05-07

	1.5.1 (2023-05-05

	1.5.0 (2023-01-03)

	1.4.0 (2022-05-24)

	1.3.2 (2021-06-22)

	1.3.1 (2021-04-06)

	1.3.0 (2021-02-08)

	1.2.0 (2020-06-09)

	1.1.6 (2020-01-28)

	1.1.5 (2019-11-15)

	1.1.4 (2019-09-26)

	1.1.3 (2019-08-06)

	1.1.2 (2019-05-28)

	1.1.1 (2019-05-21)

	1.1.0 (2019-05-14)

	1.0.0 (2019-05-02)

	Firmware Embedded SBoM Specification
	Acknowledgements

	Preface

	Glossary

	Introduction

	Embedding the SBoM

	Data Provided by the SBoM

	SBoM Information Flow

	Using VEX Rules

	Final Comments

	Appendix

	ChromeOS firmware testing
	Prerequisites

	Prepare Chrome OS for testing

	Pack a fresh firmware into the CAB format

	Local test of the CAB file

	LVFS

	Updates with LVFS

	Test cases

	Appendix A: List of FWs used in this doc

	How to run fwupd tests with Moblab
	Overview

	Before you begin

	Test cases

	How to verify the test results

	How to get debug information

	FAQs

 [image: banner logo]

Introduction

Updating firmware on devices is traditionally difficult for users on Linux systems.
Not knowing exact hardware details, where to look for updates or how to run the
Windows-specific flashing tools makes it almost impossible to update firmware on
devices.

As a result, “broken” hardware is being returned to the vendor and customer
systems are left in an insecure state even when updates have been released that
fix the specific issues. Linux as the OS is now mainstream and vendors need to
support these customers.

The LVFS is a secure web service that can be used by OEM’s to upload firmware
archives and can also be used by users to securely download metadata about
available updates and optionally, the updates themselves.

Millions of customer devices are being updated every month thanks to the LVFS!

The Problem

Linux users have traditionally had problems with keeping hardware up to date
with firmware updates.
There are three components to this problem:

	They do not know what exact hardware they have installed, the current
firmware version, or even if the devices support being upgraded at all.

	They do not know where to look for updates; often searching the various
vendor websites is an exercise in frustration and as a result most users do not bother.

	Windows-specific flashing tools do not work on Linux; a significant number of
Linux users keep a Windows virtual machine for essential business-critical
software that is not available on Linux.
This will not work for firmware update utilities that require low level hardware access.

The fwupd project can query supported hardware for the current firmware versions
and also deploy new firmware versions to devices, but requires metadata from the
LVFS to know the details about available updates.
It also requires vendors to prepare the firmware with the required metadata and
to use a standardized deployment framework e.g. DFU or UEFI UpdateCapsule.

Using the information from from higher level software centers can show the user the update
description in their own language and offer the update to be installed using
just three clicks of the mouse.
Security updates are handled in the same way as other OS updates meaning it is
just one mechanism for the user to understand.

The LVFS supplies the data in a secure format, allowing the fwupd project to
install the update safely.
Existing approaches have been OEM specific which meant that a large amount of
engineering effort was required, making this approach only financially viable
for enterprise use-cases.

There are a significant number of legal problems with the redistribution of firmware,
and we have been working with vendors finding acceptable methods of redistribution
whilst ensuring confidentially throughout the process. Being backed by a large
Linux vendor with heterogeneous support for many vendors and platforms puts the
LVFS in exactly the right place to build this kind of shared infrastructure.

System Architecture

The architecture is built into three layers: a presentation layer, a mechanism
and a data-provider and each can be replaced as required as they all use standard
protocols.

[image: architecture plan]

Architecture plan, showing each subsystem

GNOME Software

GNOME Software [https://wiki.gnome.org/Apps/Software] is an application store
designed to make installing, removing and updating both easy and beautiful.
It is available for Linux and used by millions of people on the following
distributions:

	RHEL and CentOS 7.4 or newer

	Fedora 22 or newer

	Ubuntu 16.04 (Xenial) or newer

	Debian 9 (Stretch) or newer

	openSUSE 15.0 or newer

	Arch from 2017-06-13

For most desktop systems, at session start-up the metadata XML and detached
signatures are checked for a specified age, and if required newer files are
automatically downloaded from the LVFS and pushed into fwupd over D-Bus.
When the update list is required we query the fwupd daemon over D-Bus for any
pending updates.
If there are updates that need applying then they are downloaded and the user is
notified and the update details are shown in the specified language.
The user has to explicitly agree to the firmware update action before the update
is performed.

[image: GNOME Software]

GNOME Software

fwupd

This project provides a system-activated daemon fwupd with a D-Bus interface
that can be used by unprivileged clients.
Clients can perform system wide upgrades and downgrades according to a security
policy, which uses PolicyKit to negotiate for authorization if required.
The command line tool fwupdmgr can be used to administer headless clients on
the command line over SSH or using a management framework like Red Hat Satellite
or Dell CCM [https://www.cloudclientmanager.com].

The daemon parses metadata in AppStream [https://www.freedesktop.org/software/appstream/docs/]
format from the LVFS along with a detached GPG or PKCS#7 signature.
The .cab archives which must contain at least a .metainfo.xml file and a detached
GPG/PKCS#7 signature of the firmware payload.
Other files are permitted in the archive which allows the same deliverable to be
used for the Windows Update system.

Internally fwupd creates a device with a unique ID, and then a number of
GUIDs are assigned to the device by the plugin.
It is these GUIDs specified in the update metadata file that are used to match
a firmware file to a device.
Although it is usually the responsibility of the system vendor to generate a new
GUID if the hardware requires a different firmware file, we can match an update
that only applies to specific versions of hardware using
CHID [https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/using-chids] GUIDs.

Adding more plugins to fwupd is of course possible, but where possible vendors should use
the existing code and for instance add an ESRT data table when building the system firmware.

Offline Updates

When the user agrees to a UEFI firmware update the firmware is unpacked into the
EFI System Partition, several UEFI keys are set and the system reboots.
On reboot the fwupd.efi binary is run before the bootloader is started and
the firmware UpdateCapsule UEFI runtime source is called.

For most devices (e.g. USB, Thunderbolt, Synaptics, etc.) the update is
performed without requiring a reboot.

LVFS

The LVFS provides an OEM-facing website that requires a username and password
to access the secure console.
There is no charge to vendors for the hosting or distribution of content,
although there are some terms of service to vendors distributing content.

This service should only be used to distribute firmware that is flashed onto
non-volatile memory.
It is not designed for firmware that has to be uploaded to devices every time
the device is used.

When .cab firmware files are submitted the following actions are performed:

	The update metadata in the archive is checked.

	The firmware capsule is signed with our GPG key or PKCS#7 certificate.
Clients do not verify the signatures in the catalog file as this is
for Windows Update only

	The new cab file is repacked. Only required files are included in the cabinet
file, typically making the download size much smaller

	The metadata is added to our database.

Many ODMs are distinct and decoupled from the OEM, and in most cases the ODM is
allowed to upload new firmware but not make it available for users.
For this use case, users on the LVFS can have different attributes, for example:

	Unprivileged users that can upload files to the testing target

	Read only access to all analytics data for a specific vendor

	Quality assurance users that can modify all firmware uploaded to a specific vendor

	Trusted users that can move files to the testing or stable target, and can
move files from testing to stable

	Manager users that can add new users to an existing vendor

[image: user permissions]

Admin controlling the user permissions.

Conclusions

The LVFS has grown to be an essential part of the Linux ecosystem used by
over one hundred vendors, 15 of which are multi-billion dollar companies.
The LVFS is a mature service providing important functionality for Linux users.

Future Work

Various vendors are working on custom plugins for fwupd as they either cannot
retrofit older hardware with the ESRT data table, or because they want more
control over the low level flashing protocol.
We certainly would encourage any new vendors wanting to use the LVFS and fwupd
to use a well-known standard like DFU or UEFI UpdateCapsule with ESRT as it
means there is no application code to write.

From a system administrators point of view, it will also soon be possible to get
notified of updates and perform upgrades using the Cockpit framework as well as
the usual client tools.

Related Projects

The Dell Repository Manager [http://www.dell.com/support/article/us/en/04/SLN293301?c=us&l=en&s=bsd&cs=04]
allows you to update the firmware on various models of Dell enterprise hardware.
There are several software (e.g. the SSU and SBUU) and hardware elements
specific to Dell (e.g., the LCC or USC) and most of the stack is proprietary.

Microsoft provides a service called Windows Update [http://windows.microsoft.com/en-gb/windows/windows-update]
which takes driver updates from vendors, optionally performs some quality
control on the update, signs the firmware and then hosts the firmware on a CDN.
The entire stack is proprietary and for Microsoft Windows only.

Getting an Account

There is no charge to vendors for opening an account or for distribution of content.
You can start the process by opening a ticket [https://gitlab.com/fwupd/lvfs-website/-/issues/new]
with as much information you have, or just with questions or for more details.

Information to Supply

	The vendor full legal name

	The public homepage for this vendor

	A link to a high resolution logo for the vendor

	The domain used for email address assigned to this vendor, e.g. @realtek.com,@realtek.com.tw

	The update protocol are you using, and if it is already supported in fwupd

	Legal permission that you have the required permission to upload to the LVFS. There is an
example document [https://gitlab.com/fwupd/lvfs-website/-/raw/master/docs/upload-permission.doc] which
can be modified, signed, and uploaded as an attachment to the GitLab issue.
We can create a vendor account without this, but the account will not be able to push firmware to
the public remotes until this document is provided.

	The Vendor ID for all hardware uploaded by this vendor (from fwupdmgr get-devices e.g. USB:0x046D)

	The reverse DNS AppStream ID namespace prefix you plan to use for all uploaded firmware, e.g. com.hp

	The URL to use for any possible security incident response (PSIRT), e.g. https://www.vendor.com/security

	An assigned “vendor manager” that can create new accounts on the LVFS in the future, and be the primary point of contact

	If you going to be acting as an ODM or IHV to another vendor, e.g. uploading firmware on their behalf

If you are acting as an ODM or IHV to another vendor:

	Which OEM(s) will you be uploading for?

	Do you have a contact person for the OEM? If so, who?

	Will you be QAing the update and pushing to stable yourselves, or letting the OEM do this?

Note

If you wish for the ticket to remain private (only viewable by the LVFS administrators)
you must mark it as confidential as otherwise the ticket is viewable by public users:

[image: _images/confidental-issue.png]

Note

Vendors who can upload firmware updates are in a privileged position where files
can be installed on end-user systems without authentication.
This means we have to do careful checks on new requests, which may take a few
days to complete.

Vendor Groups

On the LVFS there are several classes of user that can be created.
By default users are created as upload only which means they can only view
firmware uploaded by themselves.

Users can be promoted to QA users by the vendor manager so that they can see
(and optionally modify) other firmware in their vendor group.
QA users are typically the people that push firmware to the testing and stable
remotes.

There can be multiple vendor groups for large OEMs, for instance an OEM might
want a storage vendor group that is isolated from the BIOS team.
Alternatively, vendors can use Azure to manage users on the LVFS.
Contact the LVFS administrator for more details if you would like to use this.

Adding Users

The vendor manager can add users to an existing vendor group.
If the vendor manager has additional privileges (e.g. the permission to push to stable)
then these can also be set for the new user.

New users have to match the username domain glob, so if the value for the vendor
is @realtek.com,@realtek.com.tw then dave@realtek.com.tw could be added by
the vendor manager – but dave@gmail.com would be forbidden.

Trusted Users

Vendor groups are created initially as untrusted which means no users can
promote firmware to testing and stable.

Once a valid firmware has been uploaded correctly and been approved by someone
in the the LVFS admin team we will unlock the user account to the trusted
state which allows users to promote firmware to the public remotes.

Note

In most cases we also need some kind of legal document that shows us that
the firmware is legally allowed to be redistributed by the LVFS.

For instance, something like this is usually required:

<vendor> is either the sole copyright owner of all uploaded firmware,
or has permission from the relevant copyright owner(s) to upload files to
Linux Vendor Firmware Service Project a Series of LF Projects, LLC (known as the “LVFS”)
for distribution to end users.
<vendor> gives the LVFS explicit permission to redistribute the
unmodified firmware binary however required without additional restrictions,
and permits the LVFS service to analyze the firmware package for any purpose.
<signature>, <date>, <title>

Export Control

Some firmware may contain binary code that has been deemed subject to some kind
of export control.
The exact meaning of export control has been defined in various places,
including Export Administration Regulations (EAR), and International Traffic
in Arms Regulations (ITAR).

Code capable of strong encryption like AES, RSA or 3DES may be subject to
export control and it may be forbidden to distribute to users located in specific
embargoed countries like Cuba, Iran, North Korea, Sudan or Syria.

Note

Although there is a specific and notable export exception for “software updates”
in EAR, it should of course be the decision of the legal team of the OEM to
make the decision themselves.

The list of countries is usually specified per-vendor which means it is applied
for all firmware in the vendor account.
It can also be specified per-firmware, which might be useful where just one
specific firmware is explicitly covered under export control, for instance
for a model only designed to be sold to the US military.
This can be specified in the metadata block for the firmware component:

<custom>
 <value key="LVFS::BannedCountryCodes">IR,SY</value>
</custom>

Only LVFS admin team and vendor manager can edit the vendor export control list.
It is specified according to ISO3166, which would typically be CU,IR,KP,SD,SY
for most large vendors.

Note

Like all other services hosting files, the LVFS uses GeoIP data to identify
which country the user is downloading files from.
This is not a perfect science, and although the assigned list of IP blocks is
updated daily some false positives and false negatives can occur.

End User License Agreements

Legal teams of vendors sometimes request that we make the end user agree to a
license agreement or legal declaration before deploying the update.
There are several reasons why have chosen to not support EULAs:

	The majority of updates applied in the enterprise are done “unattended” and
also done at scale with thousands of devices.
Forcing the end-user to do any interactive action makes these automated or
“headless” updates impossible.

	Allowing other users to “pre-accept” the end-user license agreement isn’t
what this legal mechanism was designed for – for example is it legally binding
if the junior sysadmin accepts the agreement on the end-users behalf?
Or does it have to be accepted by someone from the destination legal team with
the authority to do so – which needs to be recorded for audit purposes.

	Vendors often want to use a “generic” boilerplate legal agreement that controls
how the user is allowed to use the hardware using overly broad language that is
either not applicable to the device, totally confusing to the end user, or by
adding restrictions on an already purchased product.

	Vendors often want to show a EULA so that if broken firmware gets deployed then
it becomes the users fault for attempting the upgrade action and the vendor
cannot be considered responsible in any way.
This isn’t fair to customers – risky or untested updates should never be
pushed to millions of end users.

	LVFS is used all over the world, and users might not even understand the
language the EULA is written in.
Legal jurisdictions also differ between the nations of this world, and the EULA
might not be legally binding or permissible.

We’ve been asked to add support for EULAs a few times and the answer has always been no.
The almost-universal consensus from the community was that allowing EULAs is a terrible
idea that would be a slippery slope, encouraging vendors to take the easy option and
show pages of overly restrictive boilerplate legalese for each update.

If your legal department disagrees, please let them know that every vendor shipping
firmware on the LVFS has agreed that a EULA was not actually required.

Note

The UI can show the release notes and an optional update message, but it is purely
advisory and the user is free to ignore or suppress it – by disabling the
condition in the source code or even patching the binary executable.
The front-end client (e.g. GNOME Software or Google Chrome) also has no
requirement to implement showing either.
This UI was not designed for EULA text and should not be used in this way.

Alternate Branches

We typically only allow the silicon vendor, the ODM or the OEM to upload firmware
for hardware, and only if that entity has legal permission to upload the file to
the LVFS.
The security model for fwupd relies on standardized registries like USB and PCI,
along with immutable DMI information to ensure that only the correct vendors
can ship firmware for their own hardware, and nothing else.

This strict rule breaks down where the OEM responsible for the hardware considers
the device end-of-life and so will no longer receive updates (even for
critical security issues).
There may also be a situation where there exists an alternate (not provided by
the vendor) free software re-implementation of the proprietary firmware, which
may be desired for licensing reasons.

In these situations we allow another legal entity to also upload firmware for the
hardware, but with a few restrictions:

	The user must manually and explicitly opt-in to the new firmware stream,
perhaps using fwupdmgr switch-branch, with a suitable warning that there
is no vendor support available and that the hardware warranty is now invalid.
This means that the alternate firmware must set the device branch
appropriately without any additional configuration.

	The alternate firmware must not ship with any code, binaries or generated
assets from the original hardware vendor (perhaps including trademarks) unless
written permission is provided in writing by the appropriate vendor.

Some real world examples might be providing a Open Source BCM57xx GPL firmware
for Broadcom network hardware, or providing a coreboot system firmware for a
long-EOLed Lenovo X220 ThinkPad.
In this instance, the LVFS may be the legal entity distributing the firmware,
which is actually provided by a trusted contributor who has permissions to upload
and hardware to test the update.
In other cases another legal entity (like coreboot itself) or an individual
trusted contributor may be considered the distributor.

In all cases the specifics should be discussed with the LVFS maintainers,
as should any concerns by licensors or existing distributors.

Note

It is insanity to throw a perfectly working machine into landfill just because
it’s considered EOL by the original hardware vendor and no longer receiving
security updates.

If we can help provide alternate safe firmware, these machines then provide
inexpensive access for education and employment for those otherwise unable to
afford devices.

Metadata

The LVFS needs additional information about the firmware which is included in
the uploaded cabinet archive.

MetaInfo Files

The .metainfo.xml file describes the device and firmware and
is extra metadata added to the firmware archive by the OEM or ODM.
The file is XML format, and uses a subset of the
AppStream [http://www.freedesktop.org/software/appstream/docs/sect-Quickstart-Addons.html] component specification.

An example metainfo.xml file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright 2018 Richard Hughes <richard@hughsie.com> -->
<component type="firmware">
 <id>com.hughski.ColorHugALS.firmware</id>
 <name>ColorHugALS</name>
 <name_variant_suffix>Black Friday Special Edition</name_variant_suffix>
 <summary>Firmware for the Hughski ColorHug Ambient Light Sensor</summary>
 <description>
 <p>
 Updating the firmware on your ColorHugALS device improves performance and
 adds new features.
 </p>
 </description>
 <provides>
 <firmware type="flashed">84f40464-9272-4ef7-9399-cd95f12da696</firmware>
 </provides>
 <url type="homepage">http://www.hughski.com/</url>
 <metadata_license>CC0-1.0</metadata_license>
 <project_license>proprietary</project_license>
 <releases>
 <release urgency="high" version="3.0.2" date="2017-02-09" install_duration="120">
 <checksum filename="my-custom-name.bin" target="content"/>
 <description>
 <p>This stable release fixes the following bugs:</p>

 Fix the return code from GetHardwareVersion
 Scale the output of TakeReadingRaw by the datasheet values

 </description>
 <issues>
 <issue type="cve">CVE-2016-12345</issue>
 <issue type="cve">CVE-2017-54321</issue>
 <issue type="dell">DSA-2020-321</issue>
 <issue type="intel">INTEL-SA-54321</issue>
 <issue type="intel">INTEL-TA-12345</issue>
 <issue type="lenovo">LEN-28775</issue>
 <issue type="vince">257161</issue>
 </issues>
 </release>
 </releases>
 <!-- we can optionally restrict this update to specific fwupd versions,
 or even previous firmware or bootloader versions -->
 <requires>
 <id compare="ge" version="0.8.0">org.freedesktop.fwupd</id>
 <firmware compare="ge" version="0.1.2"/>
 <firmware compare="ge" version="0.3.4">bootloader</firmware>
 </requires>
 <custom>
 <value key="LVFS::VersionFormat">example</value>
 <value key="LVFS::UpdateProtocol">org.acme.example</value>
 </custom>
 <!-- these keywords are optional and are used for searching -->
 <keywords>
 <keyword>bios</keyword>
 <keyword>dfu</keyword>
 </keywords>
</component>

Using GUIDs

GUID means ‘Globally Unique Identifier’ and is a 128-bit integer number used
to identify a device.
GUIDs are often formatted as strings such as 84f40464-9272-4ef7-9399-cd95f12da696.
Another name for GUID is UUID (‘Universally Unique Identifier’) and the two
terms can be used interchangeably.
When using GUIDs on the LVFS they should always be lowercase.

In fwupd the GUID is generated from the DeviceInstanceId strings,
so for a single USB device the GUIDs would be generated like this:

$ python
>>> import uuid
>>> print uuid.uuid5(uuid.NAMESPACE_DNS, 'USB\VID_0A5C&PID_6412&REV_0001')
52fd36dc-5904-5936-b114-d98e9d410b25
>>> print uuid.uuid5(uuid.NAMESPACE_DNS, 'USB\VID_0A5C&PID_6412')
7a1ba7b9-6bcd-54a4-8a36-d60cc5ee935c
>>> print uuid.uuid5(uuid.NAMESPACE_DNS, 'USB\VID_0A5C')
ddfc8e56-df0d-582e-af12-c7fa171233dc

You also can use the online generator [https://fwupd.org/lvfs/guid] to manually
convert Instance IDs to GUIDs.

Having multiple GUIDs for each device allows the vendor to choose the GUID for what
should match; to match on the vendor+product+revision you’d choose the first one,
and the vendor+device you would use the second.
We only really use the third GUID for fixing a vendor name, or other very
broad quirks that apply to all USB devices from a specific vendor.

In the case for PCI devices and other technologies like NVMe, you can dump
the GUIDs generated by fwupd using this tool:

sudo /usr/libexec/fwupd/fwupdtool --plugin-whitelist nvme get-devices --verbose
...
using e22c4520-43dc-5bb3-8245-5787fead9b63 for NVME\VEN_1179&DEV_010F&REV_01
using 83991323-9951-5adf-b743-d93e882a41e1 for NVME\VEN_1179&DEV_010F
using ad9fe8f7-cdc4-52c9-9fea-31b6f4988ffa for NVME\VEN_1179
...

More details about the GUID generation scheme used in each plugin can be found
in the README.md file in each
plugin directory [https://github.com/fwupd/fwupd/tree/master/plugins].

Note

Metainfo files can contain as many lines of <firmware type="flashed">
as required and any device with any of the GUIDs will match the firmware file.

AppStream ID

The AppStream <id> has to be unique for each device firmware stream as it
used to combine separate <release> tags in the .metainfo.xml files
into the metadata catalog that is downloaded by end users.

Choosing the correct AppStream ID is thus very important for correct operation
of the front end tools.

Firstly, the AppStream ID should have a lowercase prefix that matches the
reverse-DNS name of your vendor, similar to Java.
For instance, appropriate prefixes would be com.lenovo… or org.hughski….

The ID should also contain the model type, and perhaps also the module that is
being updated if there are (or will be) multiple updates for the same hardware.
For instance, we would build the ID further into org.hughski.ColorHug2.BIOS….

The ID should always have a suffix of .firmware, which means the finished
AppStream ID for this hardware would be org.hughski.ColorHug2.BIOS.firmware

Note

The ID has to be totally specific to the GUIDs used to match the device.
For hardware that uses a different firmware stream it is important that the
AppStream ID does not match existing firmware with the same ID.
The LVFS will warn you if you try to upload firmware with the same ID and
different sets of GUIDs.

Including the mode name is just convention; you can use the partial GUID appended
if this helps, e.g. com.hughski.ColorHug84f40464.firmware

Warning

Never include forward or backwards slashes in the ID.

Update Category

By telling the LVFS the firmware category to use for the component the front end can
correctly translate the update type in the UI.
Also for this reason, .metainfo.xml files should not
include the words ME, EC, BIOS, Firmware, Device or Update
in the component name and they will be removed if included.

The component category can be set as part of the metainfo.xml file
or set from the LVFS web console.
Most users will want to include the extra metadata to make the upload process
quicker for QA engineers.
To do this, add this to the metainfo file:

<categories>
 <category>some-value-here</category>
</categories>

Allowed Category Values

	Value

	Displayed Name

	X-System

	System Update

	X-Device

	Device Update

	X-EmbeddedController

	Embedded Controller Update

	X-ManagementEngine

	Management Engine Update

	X-Controller

	Controller Update

	X-CorporateManagementEngine

	Corporate ME Update

	X-ConsumerManagementEngine

	Consumer ME Update

	X-ThunderboltController

	Thunderbolt Controller

	X-PlatformSecurityProcessor

	Platform Security Processor

	X-CpuMicrocode

	CPU Microcode Update

	X-Configuration

	Configuration Update

	X-Battery

	Battery Update

	X-Camera

	Camera Update

	X-TPM

	TPM Update

	X-Touchpad

	Touchpad Update

	X-Mouse

	Mouse Update

	X-Keyboard

	Keyboard Update

	X-StorageController

	Storage Controller Update

	X-NetworkInterface

	Network Interface Update

	X-VideoDisplay

	Video Display Update

	X-BaseboardManagementController

	BMC Update

	X-UsbReceiver

	USB Receiver Update

	X-Drive

	Drive Update

	X-FlashDrive

	Flash Drive Update

	X-SolidStateDrive

	SSD Update

	X-Gpu

	GPU Update

	X-Dock

	Dock Update

	X-UsbDock

	USB Dock Update

	X-FingerprintReader

	Fingerprint Reader Update

	X-GraphicsTablet

	Graphics Tablet Update

Update Protocol

The LVFS needs to know what protocol is being used to flash the device.
The protocol value is used to provide information about the security of the
firmware update to end users.

The update protocol can be set as part of the metainfo.xml file
or set from the LVFS web console.
Most users will want to include the extra metadata to make the upload process
quicker for engineers.
To do this, add this to the metainfo file:

<custom>
 <value key="LVFS::UpdateProtocol">some-value-here</value>
</custom>

The latest allowed values for LVFS::UpdateProtocol can be found
using the LVFS [https://fwupd.org/lvfs/docs/metainfo/protocol].

Device Integrity

Some update protocols just transport the image to the target device and make no
guarantee of the signing requirements. Such “generic” protocols include NVMe, ATA,
DFU and many others.

The device integrity mechanism can be set as part of the metainfo.xml file or set
from the LVFS web console.

To do this, add this to the metainfo file:

<custom>
 <value key="LVFS::DeviceIntegrity">some-value-here</value>
</custom>

The allowed values for LVFS::DeviceIntegrity are:

	signed : The firmware payload is verified on-device the payload using strong
cryptography such as RSA, AES or ECC.
It is usually not possible to modify or flash custom firmware not provided by
the vendor.

	unsigned: The firmware payload is unsigned and it is possible to modify and
flash custom firmware.

Version Format

Some hardware returns the version number as a string such as
1.23.4567, and this is easily handled as a semantic version [https://semver.org/].
In other cases we are not so lucky, and the hardware returns a uint16_t or uint32_t
with no extra metadata about how it should be formatted.
This lack of specification precision means that different vendors have chosen
to convert the large integer number to various different forms.

The latest allowed values for LVFS::VersionFormat can be found
on the LVFS [https://fwupd.org/lvfs/docs/metainfo/version].

To override the default of unknown vendors should ship extra metadata
in the metainfo.xml file:

<requires>
 <id compare="ge" version="1.2.0">org.freedesktop.fwupd</id>
</requires>
<custom>
 <value key="LVFS::VersionFormat">intel-me</value>
</custom>

If the version format is unspecified, and cannot be derived from the
LVFS::UpdateProtocol then a warning will be shown during upload
and the firmware cannot be moved to stable until this is resolved.

Various security teams also want us to always show the device firmware version
with the correct format, even if an update is not available.
This may be for audit reasons, or just so customers know the version of the
firmware compared to release notes written for another operating system.
For instance, if the vendor release notes says the firmware should be any
version above 39.0.45.x (formatted as a quad) and the user is running
39.0.11522 (formatted as a triplet) it is not clear to the user what to do.

To change from the default triplet version format we can set
a fwupd quirk on the hardware device.
For instance, changing the UEFI
Lenovo ME device [https://github.com/fwupd/fwupd/blob/master/plugins/uefi/uefi.quirk]
to use the intel-me format.
Quirk files can be added upstream for future fwupd versions, or simply copied to
/usr/share/fwupd/quirks.d.
The fwupd daemon will detect the new file and refresh devices as required.

Device Flags

Some device flags can be populated from the firmware metadata, rather than the more traditional
way of setting in a per-plugin .quirk file or in the plugin code itself.
This allows device flags to be pushed from the server to the client.

For instance, on some hardware, the UEFI UpdateCapsule process would fail to deploy because there
was no HDMI/DP display attached.
Firmware can opt-in to this new requirement by setting a device flag that gets copied to the local
fwupd device.
If the client is new enough, then any firmware that opts-in then the user will be warned before
the update is scheduled that a display must be connected to continue – which is a much better user
experience than it failing after the user has rebooted to deploy the update.

To use this, the internal device flag can be populated from the firmware metadata:

<custom>
 <value key="LVFS::DeviceFlags">display-required</value>
</custom>

The exact flags that are allowed for each protocol are restricted, and the allowed values for
LVFS::DeviceFlags (along with fwupd requirements) can be found via the LVFS [https://fwupd.org/lvfs/docs/metainfo/protocol/flags].

Note

Only fwupd versions greater or equal to 1.9.1 are able to copy device flags from the metadata,
and only devices with the FU_DEVICE_INTERNAL_FLAG_MD_SET_FLAGS flag set.
If you require the device flag to be set for a successful update then you should also have the
correct fwupd version requirement to ensure the flag get copied. e.g.

<requires>
 <id compare="ge" version="1.9.6">org.freedesktop.fwupd</id>
</requires>

Please contact the LVFS administrator if other flags from
FuDevice [https://fwupd.github.io/libfwupdplugin/index.html#constants] or
FwupdDevice [https://fwupd.github.io/libfwupd/index.html#constants]
are required to be set by the metadata.

Adding Restrictions

When the user requests updates for a specific device, all the GUIDs provided by
the device will be match against any of the GUIDs in the metadata.
To limit these matches using a variety or requirements the <requires> tag
can be used.
For instance, the update can be conditional on the firmware version of another
device, or on the kernel version of the installed system.

Requirements can use different methods to compare version numbers.

	Type

	Example

	Description

	eq

	1.2.3

	Equal

	ne

	1.2.3

	Not equal

	lt

	1.2.3

	Less than

	le

	1.2.3

	Less than or equal

	gt

	1.2.3

	Greater than

	ge

	1.2.3

	Greater than or equal

	glob

	??FWA*

	Filename glob

	regex

	FW[1-7]

	Perl compatible regular expression

Using CHID

Newer versions of fwupd can restrict updates to a specific
Computer Hardware ID [https://docs.microsoft.com/en-us/windows-hardware/drivers/dashboard/using-chids], much like Microsoft update:

<requires>
 <id compare="ge" version="1.0.8">org.freedesktop.fwupd</id>
 <hardware>6de5d951-d755-576b-bd09-c5cf66b27234</hardware>
</requires>

If multiple <hardware> entries are specified (using an OR | separator) then any may be present.

<requires>
 <id compare="ge" version="1.0.8">org.freedesktop.fwupd</id>
 <hardware>6de5d951-d755-576b-bd09-c5cf66b27234|27234951-d755-576b-bd09-c5cf66b27234</hardware>
</requires>

Using fwupd >= 1.9.10 the uploader can also deny updates to a specific Computer Hardware IDs:

<!-- only newer versions of fwupd understand 'not_hardware' requirements -->
<requires>
 <id compare="ge" version="1.9.10">org.freedesktop.fwupd</id>
 <not_hardware>6de5d951-d755-576b-bd09-c5cf66b27234|27234951-d755-576b-bd09-c5cf66b27234</not_hardware>
</requires>

CHIDs can also be added or removed in the LVFS web UI, but only before
the firmware is published to stable channel.

[image: component requirements]

Modifying requirements of an uploaded firmware.

Other Firmware Version

Newer versions of fwupd can restrict updates on one device depending on
the version of firmware on another device.
This is most useful when requiring a minimum EC controller version before
updating a system firmware, or when a modem firmware needs a specific fix
for the baseband firmware:

<requires>
 <id compare="ge" version="1.1.3">org.freedesktop.fwupd</id>
 <firmware compare="ge" version="0.1.2">6de5d951-d755-576b-bd09-c5cf66b27234</firmware>
</requires>

Newer versions of fwupd can restrict updates on one device depending if another
firmware GUID exists on the system of any version.
This is similar to the CHID method above but uses the GUID of the firmware,
not a hardware ID.

This can be used to ensure that a specific embedded controller is detected
for a specific system firmware update, for example.

<requires>
 <id compare="ge" version="1.2.11">org.freedesktop.fwupd</id>
 <firmware>6de5d951-d755-576b-bd09-c5cf66b27234</firmware>
</requires>

Parent Version

For composite devices such as docks you might want to restrict the child
device with respect to the parent, for instance requiring the parent to
have greater than a specific bootloader version number.

The other useful thing to use this for is checking if the parent has a specific
GUID (of any version) which allows us to match against the common VID&PID
instance IDs. This would allow us to restrict a generic child device update to
a specific OEM vendor parent.

Depth is specified as 1 to match the parent device and
2 to match the grandparent device:

<requires>
 <id compare="ge" version="1.3.4">org.freedesktop.fwupd</id>
 <firmware depth="1" compare="ge" version="0.1.2">bootloader</firmware>
 <firmware depth="1">12345678-1234-1234-1234-123456789012</firmware>
</requires>

Newer versions of fwupd can understand an OR requirement using a |
separator between the listed GUIDs.

<!-- only newer versions of fwupd understand parent OR requirements -->
<requires>
 <id compare="ge" version="1.8.9">org.freedesktop.fwupd</id>
 <firmware depth="1">12345678-1234-1234-1234-123456789012|6de5d951-d755-576b-bd09-c5cf66b27234</firmware>
</requires>

Sibling Version

Composite devices can also specify that a device sibling has to exist, optionally
with a specific version. To do this, specify the depth as 0:

<!-- only newer versions of fwupd understand the 'depth' property -->
<requires>
 <id compare="ge" version="1.6.1">org.freedesktop.fwupd</id>
 <firmware depth="0">12345678-1234-1234-1234-123456789012</firmware>
</requires>

Child Version

Composite devices can also restrict the parent device with respect to the child.
This is useful when a generic parent device has vendor-specific child devices attached.
To do this, specify the depth as -1 to match any child device.

<!-- only newer versions of fwupd understand the negative 'depth' property -->
<requires>
 <id compare="ge" version="1.9.7">org.freedesktop.fwupd</id>
 <firmware depth="-1">12345678-1234-1234-1234-123456789012</firmware>
</requires>

Client Features

Versions of fwupd >=1.4.5 can restrict updates depending on the features the
client can provide. For instance, if the tools are being run in non-interactive
mode then it may not be possible to ask the user to perform a manual action.

Some devices may need to show the user some text or an image of how to
manually detach the firmware from runtime mode to bootloader mode.

…
<screenshots>
 <screenshot type="default">
 <caption>Unplug the controller, hold down L+R+START for 3 seconds until both LEDs are flashing then reconnect the controller.</caption>
 
 </screenshot>
</screenshots>
…
<requires>
 <id compare="ge" version="1.4.5">org.freedesktop.fwupd</id>
 <client>detach-action</client>
</requires>
…

Other firmware may require showing the user a message or image on how to reset
the hardware when the firmware update has completed.
This specific post-update message functionality is only available for specific protocols and
implemented in some versions of fwupd and GNOME Software.

[image: Post-installation dialog]

Showing the user some instructions to reboot the hardware.

This action can be performed with one or two metadata keys set in the
.metainfo.xml file, or chosen using the LVFS component editor.

…
<custom>
 <value key="LVFS::UpdateMessage">Please turn the device off and back on again for the update to complete</value>
 <value key="LVFS::UpdateImage">https://people.freedesktop.org/~hughsient/temp/unifying-power.png</value>
</custom>
…
<!-- only newer versions of fwupd understand 'client' requirements -->
<requires>
 <id compare="ge" version="1.4.5">org.freedesktop.fwupd</id>
 <client>update-action</client>
</requires>
…

Note

You can include either the UpdateImage or 
 </screenshot>
 </screenshots>
 …
 </component>

In the public metadata the URL is rewritten to use the LVFS CDN to preserve the
privacy of the remote client.

The screenshot will only be shown by the front end client when the device has
the _NEEDS_BOOTLOADER flag.

Please also add a <client> requirement if the update cannot be performed
without showing the image or caption.

Generic Components

Vendors can include an extra .metainfo.xml file with the
<component type="generic"> to supply information used by the
LVFS to identify the top-level device.
This is only useful when there is no obvious existing high-priority
component that can be used for display.

This would be useful for a dock to have the title WonderDock2
rather than showing a seemingly random sub-component of it on the
public pages.

An example generic.metainfo.xml file would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright 2020 Richard Hughes <richard@hughsie.com> -->
<component priority="9" type="generic">
 <id>com.hughsie.WonderDock.firmware</id>
 <name>WonderDock</name>
 <summary>Firmware for the ACME WonderDock</summary>
 <url type="homepage">http://www.hughsie.com/</url>
 <metadata_license>CC0-1.0</metadata_license>
</component>

A generic component can also be created for composite firmware manually
on the LVFS for firmware that has already been uploaded.

Style Guide

When all vendors use the same style everything looks more consistent for
the end user.
Here are some of our suggestions:

<name>

	Use a short device name, e.g. “ThinkPad P52s” or “ColorHug 2”.

	Use a UTF-8 character (e.g. ™ or ®) rather than (R) if required

	Don’t include the vendor name

Note

If a component matches two components with the same GUID, please use a forward slash to delimit
each model and specifier, for instance, you SHOULD do this:

	<name>ThinkPad T580/ThinkPad P52s</name>

…and NOT do any of these:

	<name>ThinkPad T580/P52s</name>

	<name>FC30,NES30</name>

	<name>ColorHug2 & ColorHug2.1</name>.

To avoid specifying multiple components in the <name> you could also have one firmware
payload in the cabinet archive referenced by two different .metainfo.xml files – each with
a different DMI CHID, parent or child requirement.

<name_variant_suffix>

	Only use this optional tag if the <name> would be duplicated, e.g. if
there are two variants of the same hardware

	Use a short string, as it will be appended to the visible name with brackets if required

	Don’t duplicate any part of the name

<branch>

	Only use this optional tag if there are multiple vendors providing different
firmware streams for the same hardware.

	Use a familiar lower case single word string, as it will be shown in the UI

<summary>

	Refer to the type of hardware, e.g. “Firmware for the Hughski ColorHug Colorimeter”

	Include the vendor name before the full device description

	Use a UTF-8 character (e.g. ™ or ®) rather than (R) if required

<description>

	Try to avoid explaining the implementation details of the fix, e.g.
“Ensure accurate color profile creation with high screen brightness.”
rather than
“Fix overflow in counter when over 500 Lux detected.”

	Do not use overly technical descriptions when simpler text would suffice, e.g. use
“Fix LED color during system start up.” rather than
“Fix LED color during POST.”

	Try to describe fixed bugs and new features from the point of view of the user
and how it affects them

	For security or important updates also include the effect of not applying the update, e.g.
“Disk corruption resulting in possible data loss may occur until this update is installed.”

<release tag="N1NET43W" …>

	The release tag may be optional or required based on component category and
vendor policy. If provided it can used to show a vendor-specific text
identifier that is different from the version number.

	The tag may be unique only to the model, or be unique for the entire vendor.

	This attribute should not be used if the tag is not used to identify the
specific firmware on the vendor homepage.

	Depending on vendor policy, the release tag may be displayed with the header
External release Software ID or Machine Type Model.

Uploading Firmware

Creating a Cabinet Archive

The .cab archive format was chosen to match the format expected
by Windows Update.
This allows vendors to produce one deliverable that can be submitted to the LVFS
for signing and then to Microsoft Update, or the other way around.
Signatures from one process will not overwrite signatures from another.

It is recommended you name the archive with the vendor, device and version
number, e.g. hughski-colorhug-als-1.2.3.cab and is suggested that
the files inside the cab file have the
same basename, for example:

[image: cabinet archive example]

Files inside a typical archive

Using Linux

Cabinet archives can be created easily on Linux with the the gcab
command line program. For example:

$ gcab -c -v acme-product-name-v1_2_3.cab firmware.metainfo.xml firmware.bin
firmware.metainfo.xml
firmware.bin

Using Windows

When building archives on Windows you will need to use the makecab.exe
program. This works slightly different to gcab in that it needs
a manifest to be created of all the files that are included.
To create the manifest create a file called config.txt with the
following contents:

.OPTION EXPLICIT
.set Cabinet=on
.set Compress=on
.set MaxDiskSize=0
.set DiskDirectoryTemplate=.
.set DestinationDir=DriverPackage
firmware.metainfo.xml
firmware.bin

Then run makecab to create the 1.cab archive:

C:\> makecab /F config.txt
Cabinet Maker - Lossless Data Compression Tool

2,098,010 bytes in 2 files
Total files: 2
Bytes before: 2,098,010
Bytes after: 1,595,399
After/Before: 76.04% compression
Time: 2.12 seconds (0 hr 0 min 2.12 sec)
Throughput: 968.26 Kb/second

Warning

If you forget the .OPTION EXPLICIT in the manifest then the size of
the archive is limited to 1.38Mb.
If you try including a firmware with a size greater than this you will see
Invalid folder index when trying to use fwupdmgr as the archive is not valid.

Signing The Archive

The upload process repacks the uploaded archive into a new cabinet file
and signs the firmware image using a detached GPG or PKCS#7 signature
so client tools can be sure the firmware actually originated from the LVFS.
Any existing Windows Update signatures are also copied into the new
archive although are not used on Linux.
The signed archive is prefixed with the hash of the uploaded file to avoid
clashes with other uploaded files and to make the download location non-predictable.

Remotes

Normally firmware is uploaded to a private remote.
This firmware is available to only the user that uploaded it, and any QA users
in the vendor group. It is not visible to end-users, other vendors or to fwupd
running locally.

Firmware can be moved to a so-called embargo remote that means that is included
in the private metadata catalog that is available for any users in the same
vendor group.
It is not available to any other vendors (even vendors acting as ODM or OEM) and
is also not available to the public.

Once the firmware is moved to testing it is available to the general public,
typically a few thousand users who have opted-in to testing pre-release firmware.

Then the firmware can be moved to stable which makes it available to tens of
millions of public users.

Affiliated Vendors

The affiliates feature on the LVFS may be interesting to larger OEMs, as it
allows users working for other ODMs to upload firmware on the OEMs behalf.

First, some nomenclature:

	OEM: Original Equipment Manufacturer, the user-known company name on
the outside of the device, e.g. Sony, Panasonic, etc.

	ODM: Original Device Manufacturer, typically making parts for one or more
OEMs, e.g. Foxconn, Compal, etc.

There are some OEMs where the ODM is the entity responsible for uploading the
firmware to the LVFS.
The per-device QA is typically done by the OEM, rather than the ODM, although
it can be both.
Allowing the ODM to log in as the OEM is not good design from a security,
privacy or audit point of view.

The LVFS administrator can mark other vendors as affiliates of other vendors.
This gives the ODM permission to upload firmware that is owned by the OEM to
the LVFS, and that appears in the OEM embargo metadata.
The OEM QA team is also able to edit the update description, move the firmware
to testing and stable (or delete it entirely) as required.
The ODM vendor account also doesn’t have to appear in the search results or the
vendor list, making it hidden to all users except the OEM.

This also means if an ODM like Foxconn builds firmware for two different OEMs,
they also have to specify which vendor should own the firmware at upload time.
This is achieved with a simple selection widget on the upload page, but is only
shown if affiliations have been set up.

[image: upload for ODM]

Upload page for ODM.

The ODM is able to manage their user accounts directly, either using local
accounts with passwords, or ODM-specific OAuth which is the preferred choice as
it means there is only one place to manage credentials.

Moving Firmware From ODM to OEM

In some instances it is better to upload firmware by the ODM vendor to the ODM
group, rather than the affiliated OEM. This would let anyone in the ODM QA group
modify the update, for instance changing the update description or performing
an end-to-end test.

Once the firmware has been tested, it can be moved to the OEM account,
although it can only be moved back by the OEM as the ownership has been
transferred.

[image: affiliate change]

Moving a firmware to a different vendor.

Automatic Uploads

You can automate the upload of firmware from a build pipeline by creating a user
token. This can then be used to upload firmware for that user using a script, e.g.

curl -X POST -F file=@/tmp/foo.cab https://fwupd.org/lvfs/upload/token \
 --user "username@domain.com:USERTOKENHERE"

All firmware visible for the user can also be queried in the same way:

curl https://fwupd.org/lvfs/firmware/auth --user "username@domain.com:USERTOKENHERE"

The mapping from vendor name to LVFS vendor ID can be found using:

curl https://fwupd.org/lvfs/vendors/auth --user "username@domain.com:USERTOKENHERE"

Warning

Do not use your login password! Generate a token when logged in to the
LVFS using the User Profile [https://fwupd.org/lvfs/profile] settings.

Firmware Testing

Online Tests

When a firmware format is set in the metainfo.xml file
various tests are performed on the firmware by the LVFS.
This includes checking file headers, magic numbers or CRCs for the chosen
update protocol.

The update protocol can be changed on the LVFS website, and the correct tests
will be run automatically.
Firmware that has unresolved test failures cannot be pushed to the
testing or stable remotes.
For some tests the failure can be waived by a QA user.

UEFI Capsule

Capsule updates should be uploaded with a valid CAPSULE_HEADER
that contains a GUID listed in the metainfo.xml file.

For reference, the UEFI capsule header is defined like this:

typedef struct {
EFI_GUID CapsuleGuid;
UINT32 HeaderSize;
UINT32 Flags;
UINT32 CapsuleImageSize;
} EFI_CAPSULE_HEADER;

If the header is missing or invalid the test will fail, although the failure
can be waived by a QA user.

[image: Test failure due to invalid UEFI capsule]

DFU

DFU updates must be uploaded with a valid UFD footer
that matches the device revision number with a correct CRC value.

Although these can be waived by a QA user, firmware uploaded without a footer
can be installed on any DFU device, which makes this unwise.

[image: Test failure due invalid DFU footer]

dfu-tool from the fwupd project can convert a raw firmware image to
include a DFU header, for example:

$ dfu-tool convert dfu old.raw new.dfu
$ dfu-tool set-vendor new.dfu 0xabcd
$ dfu-tool set-product new.dfu 0x1234

Blocklist

All update binaries, and shards contained within are scanned for strings which
may indicate a problem with the firmware. Example strings are:

	DO NOT SHIP

	To Be Defined By O.E.M

Although these can be waived by a QA user, firmware should not be uploaded that
have this text.

[image: Test failure due to blocklist detection]

Additionally, the blocklist plugin will search for other information that may
add a component claim. For instance the computrace claim will be added to any
firmware shipping the official Computrace agent, and it will be visible to users
when viewing the component information.

Microcode

All UEFI updates are decompressed, and if a processor microcode is found then it
is compared with older firmware versions that have been uploaded to the LVFS.

If the microcode has been downgraded then the test will fail, although the failure
can be waived by a QA user.

[image: Test failure due to microcode downgrade]

PE Check

Any EFI shards are loaded and will have their PE signatures checked.
If any certificate is out of date, or otherwise invalid a test failure will appear.
This failure can be waived by a QA user.

[image: Test failure due to PE signature being out of date downgrade]

End-to-End testing

Embargo remotes

Once the firmware is in an embargo remote anyone in the vendor group can then
download the vendor-embargo.conf from the LVFS metadata page [https://fwupd.org/lvfs/metadata/]
and install it locally on their Linux system.

Warning

The vendor-embargo.conf file should never be emailed to anyone not in your
vendor group.

If you want to allow access to an ODM or OEM this can be done by transferring
the ownership of the firmware.

To use the embargo remote:

	Download a new version of vendor-embargo.conf from the LVFS [https://fwupd.org/lvfs/metadata/]

	Put your LVFS email in the Username= field in vendor-embargo.conf

	Generate a LVFS user token [https://fwupd.org/lvfs/profile] for the Password= field in vendor-embargo.conf

	Install it to /etc/fwupd/remotes.d if using a distribution build of fwupd, or /var/snap/fwupd/common/var/lib/fwupd/remotes.d if using the snap build

	Use fwupdmgr refresh to download the new metadata

Warning

	Do not rename the vendor-embargo.conf to lvfs.conf – both are required

	Do not manually modify the existing lvfs.conf file

	You should use a fwupd versions newer than 1.7.9 – use sudo apt remove fwupd then
sudo snap install fwupd to get a newer fwupd on Ubuntu LTS.

After waiting a few minutes for the LVFS to regenerate the vendor group metadata,
the user can do fwupdmgr refresh to get the new metadata which includes
the new firmware release.
Once the new metadata is available on the local system the device can be updated
either using fwupdmgr update or using GNOME Software.

Note

You can force GNOME Software to update the metadata catalog using the refresh
button in the left hand side of the header bar in the Updates panel.

Testing and stable remotes

You should only move stable firmware to testing and stable after completing an
end-to-end test with the embargo remote.

Warning

It can take a few hours to regenerate the testing and stable remotes
and up to 24 hours for users to download the new metadata catalog.
Most vendors see a large spike in downloads the day after they move a firmware
to stable, and then a steady decay the days after.

Debugging Metadata

If you’ve moved the firmware to embargo, waited for the remote to regenerate,
and then done fwupdmgr refresh and still do not have any update available you
can check for the new release in the downloaded metadata using vim:

$ cat /var/lib/fwupd/remotes.d/NAME_OF_VENDOR-embargo/metadata.xml.gz | gunzip | less

<?xml version='1.0' encoding='UTF-8'?>
<components origin="lvfs" version="0.9">
 <component type="firmware">
 <id>com.8bitdo.fc30.firmware</id>
 <name>FC30 Device Update</name>
 …
 <requires>
 <id compare="ge" version="0.9.3">org.freedesktop.fwupd</id>
 </requires>
 <screenshots>
 <screenshot type="default">
 <caption>Unplug the controller, hold down L+R+START for 3 seconds until both LEDs are flashing then reconnect the controller.</caption>
 
 </screenshot>
 </screenshots>
 <releases>
 <release timestamp="1520380800" urgency="medium" version="4.10">
 <location>https://fwupd.org/downloads/2999ee63c0cff96893c1614955f505cb4f0fa406-8Bitdo-SFC30_NES30_SFC30_SNES30-4.10.cab</location>
 <checksum type="sha1" filename="2999ee63c0cff96893c1614955f505cb4f0fa406-8Bitdo-SFC30_NES30_SFC30_SNES30-4.10.cab" target="container">a60593fd1dbb40d7174c99f34b5536f45392bf6c</checksum>
 <checksum type="sha1" filename="N30_F30_firmware_V4.10.dat" target="content">f6e4fe9c56585e200b8754d59eb1e761090bd39f</checksum>
 <description>
 <p>Enhanced the stability of the Bluetooth pairing.</p>
 </description>
 <size type="installed">46108</size>
 <size type="download">53407</size>
 </release>
 <release timestamp="1506038400" urgency="medium" version="4.01">
 <location>https://fwupd.org/downloads/fe066b57c69265f4cce8a999a5f8ab90d1c13b24-8Bitdo-SFC30_NES30_SFC30_SNES30-4.01.cab</location>
 <checksum type="sha1" filename="fe066b57c69265f4cce8a999a5f8ab90d1c13b24-8Bitdo-SFC30_NES30_SFC30_SNES30-4.01.cab" target="container">78ef2663beaa952415c3719447b0d2ff43e837d8</checksum>
 <checksum type="sha1" filename="bluetooth_firmware_v4.01.dat" target="content">f6cacd2cbae6936e9630903d73c3ef5722c4745c</checksum>
 <description>
 <p>Fixed input lag problem when used with other controllers.</p>
 </description>
 <size type="installed">45596</size>
 <size type="download">52085</size>
 </release>
 </releases>
 <provides>
 <firmware type="flashed">7934f46a-77cb-5ade-af34-2bd2842ced3d</firmware>
 <firmware type="flashed">7a81a9eb-0922-5774-8803-fbce3ccbcb9e</firmware>
 </provides>
 </component>
 …

Here you can see a lot of information. Some interesting points:

	The 4.10 and 4.01 .metainfo.xml files have been combined into one <component> using the <id> to combine them.

	They always share the same set of screenshots

	They always share the same set of GUIDs

	They always share the same set of requirements

You can also examine the stable metadata the same way:

$ cat /var/lib/fwupd/remotes.d/lvfs/metadata.xml.gz | gunzip | less

Signed Reports

After each update the fwupdmgr client tools allow the end user to submit a “report”
which is used by the firmware owner to validate the firmware deployment is correct.
Any failures can be analyzed and patterns found and the metadata can be fixed.
For instance, the failures might indicate that the required fwupd version needs
to be raised to a higher value, or that the update requires a specific bootloader
version.

Part of the anonymous report also includes the device checksum which can be used
to verify the firmware is being deployed correctly.
All users can submit reports, and there is no way to verify the report has not
been modified by the end user before submission.
This means reports should not be used for trust, and the information only used
when statistically significant.

There is provision in fwupd 1.2.6 and newer to actually sign the report contents
using a per-machine certificate.
This allows the LVFS to verify the report has not been modified after being signed,
and also means the LVFS now knows what user submitted the report.
If the LVFS knows which user (and thus which vendor) owns which certificate the
report can then be used for trusted operations.
For instance, setting the “golden” device checksums for the update, or verifying
that the firmware was indeed tested on specific hardware.

To do this, the user must add at the certificate from each machine used for testing:

[image: Uploading client certificates]

The user can then upload reports to the LVFS in a trusted way by signing the report:

$ fwupdmgr refresh
$ fwupdmgr update
…reboot…
$ fwupdmgr report-history --sign

This is then reflected in the public device pages for vendors that have public accounts:

[image: Showing which QA teams tested the update]

Note

The version of fwupd is shown for peripheral updates, and the system DMI
information is used for system updates.

Interestingly, this information is also exported into the public metadata, e.g.

…
<artifacts>
 <artifact type="binary">
 …
 <testing>
 <test_result date="2021-07-14">
 <vendor_name id="1">LVFS</vendor_name>
 <device>LENOVO ThinkPad X1 Carbon 7th</device>
 <os version="34" variant="workstation">fedora</os>
 <previous_version>1.2.6</previous_version>
 <custom>
 <value key="RuntimeVersion(org.freedesktop.fwupd)">1.6.2</value>
 </custom>
 </test_result>
 </testing>
 </artifact>
</artifacts>
…

Additionally, the signed report can be made available to 3rd parties,
typically as part of a hardware certification program.

[image: Sharing a URL for hardware certification]

Note

Sharing the URL allows a user (possibly outside your organization)
to read the specific report details but not modify the firmware or
report in any way.

Signed Reports With Token

In some automated tested scenarios the image on the DUT is ephemeral and manually uploading the
host-generated signing key to the LVFS is not appropriate.

In this case, allow the user to upload a report using Basic authentication so that the LVFS can
treat it as “signed” by the report uploader.

This means the user can do (on fwupd >= 1.9.1):

$ fwupdmgr modify-remote lvfs Username sign-test@fwupd.org
$ fwupdmgr modify-remote lvfs Password V92KVWWCA5VKYUSX
$ fwupdmgr refresh
$ fwupdmgr update
…reboot…
$ fwupdmgr report-history

… and the LVFS treats that as if --sign was used if the authentication succeeds.

Offline Reports

A detached test report can be used when the test machine has no public internet connection.

This means the user can do (on fwupd >= 1.9.10):

$ fwupdmgr install filename.cab
…reboot…
$ fwupdmgr report-export --sign
$ cp *.fwupdreport /media/YOUR_USBDISK/

Then on a different (internet-connected) machine, log into the LVFS, navigate to the specific
firmware page and click the Reports tab.
From there the /media/YOUR_USBDISK/*.fwupdreport files can be uploaded:

[image: Uploading an offline report]

Note

The LVFS uses the current logged in user to assign the test user and vendor group.

Claims

Firmware uploaded to the LVFS is scanned, and attributes about the update are added
automatically.

Some claims may be positive, for instance if hardware supports verification.
Negative claims are also added, for instance if verification checksums are missing.
Informational neutral claims are also added, which are not positive or negative,
but may be a consideration for the user, e.g. if Computrace is included.

UEFI Shell

Including the Shell.efi in a firmware update can create additional supply chain
security risks.
From the UEFI shell it is very easy to downgrade processor microcode or to abuse
the existing update process.
It also makes attacking SMI handlers much easier, e.g. ThinkPwn [https://github.com/Cr4sh/ThinkPwn].

The EFI shell allows direct RW access to memory using mm command, which by
itself defeats SecureBoot and everything else that’s security is based on memory
not being being attacker-controlled.

Old Microcode

Processor microcode can be thought of runtime firmware for the CPU processor itself.
It maps “high level” x86 instructions to hardware micro-opcodes that are specific
to the processor.
Microcode is supplied as an encrypted blob by CPU vendors like Intel and AMD
and cannot be modified in any way by the end user.
Only microcode signed by the processor vendor can be loaded onto the CPU.

In some cases, the processor vendor will issue a new microcode to address an issue,
which may be security sensitive.
This has been done many times in the past, e.g. to fix or mitigate the Spectre,
Meltdown and Foreshadow security issues.
In some cases microcode updates are even done to increase performance for a
specific workload.

If a firmware is tagged as _containing old microcode it doesn’t always mean
that there is an unpatched security issue.
Some microcode is vendor-specific, so for instance Lenovo might create an update
on the LVFS that updates the version of microcode of CPUID 0x906ec from 0xd2 to 0xd3.
Although Dell might be using the same processor, the motherboard hardware is not
affected and no update will be prepared.

Computrace

When a computer equipped with Computrace is reported stolen, the firmware agent
attempts to notify the monitoring center, allowing the Absolute Theft Recovery Team to
forensically mine the computer using a variety of procedures including key
captures, registry scanning, file scanning, geolocation, and other investigative
techniques to determine who has the computer and how it is being used.
Absolute then works with local law enforcement agencies to recover the computer.

Due to the way the agent works, it’s often seen as a “legitimate” firmware implant,
which may be a consideration when purchasing hardware.

The Computrace agent is nonfunctional under Linux and only works when using
Microsoft Windows XP and newer.

The related LoJax UEFI rootkit hijacks the Computrace agent for malicious puposes.

EDK Debug Agent

No production firmware should include the EDK Debug Agent as it allows the end
user to trivially disable host protections like BootGuard, and potentially also
allows unauthenticated access to SMM, which is the most secure layer in the machine.

HP Sure Start

Every time the PC powers on, HP Sure Start automatically validates the integrity
of the BIOS code to help ensure that the PC is safeguarded from malicious attacks.

Once the PC is operational, runtime intrusion detection constantly monitors memory.
In the case of an attack, the PC can self-heal using an isolated “golden copy”
of the BIOS in less than a minute.

HP Sure Start is a hardware technology available only on some HP hardware.

Intel BIOS Guard

BIOS guard helps ensure that firmware malware stays out of the BIOS by blocking
all software based attempts to modify protected BIOS without the platform
manufacturer’s authorization.

Typically, this is implemented by blocking SMM writes to the SPI flash chip.

Intel Boot Guard

Intel Boot Guard is a technology introduced by Intel in the 4th Intel Core
generation (Haswell) to verify the boot process.
This is accomplished by flashing the public key of the BIOS signature into the
write-once field programmable fuses of the CPU itself, typically during the
manufacturing process.

In this way it has the public key of the BIOS and it can verify the correct
signature of the firmware during every subsequent boot.
Once enabled by the manufacturer, Intel Boot Guard cannot be disabled.

Signed Firmware

Firmware can either be signed or unsigned.
Signed in this context means the binary code has been either signed or encrypted
using private-public asymmetric key cryptography.

It does not include firmware protected with weak symmetric methods such as XTEA as
the private key would need to be stored on the device itself, which is insecure.
It also does not include firmware “protected” with checksums like CRC32.

Devices supporting signed firmware can only be updated by the original OEM
and alternate “homebrew” or malicious firmware cannot be written.

Verified Firmware

When devices are flashed with new firmware the device will normally self-check that
the data has been written correctly.
Some devices just write new data to an SPI flash chip and hope for the best.

Device Checksums

When devices are flashed with new firmware the device will normally verify that
the data has been written correctly.
Devices supporting verified firmware either allow the host to read back the written
firmware at a later time, or will return a internally-calculated checksum.

This allows users to verify that devices have not been tampered with, which may
even be a concern before first use due to supply chain attacks.

For UEFI firmware, although the firmware capsule is signed by the OEM or ODM,
software can’t reliably read the SPI EEPROM from userspace.
The UEFI firmware does provide a hash of the firmware, or more specifically,
a hash derived from the stored firmware event log.

A final hash of all the TPM firmware events is stored in the TPM chip as PCR0.

To list the various PCRs on the running system you can use
cat /sys/class/tpm/tpm0/pcrs for TPMs using protocol 1.2, or
tpm2_listpcrs for TPMs using protocol 2.0.
The PCR0 can be included in the vendor-supplied firmware.metainfo.xml in the
cabinet archive:

<releases>
 <release date="2019-01-08" urgency="high" version="1.2.3">
 <checksum type="sha1" target="device">ce7dd93006be33bcce1a1965cb69634bd0a0fe35</checksum>
 <checksum type="sha256" target="device">c479988947653b403d6a4ebe366cc60eaf7b6e147bd058fb524be418890655c9</checksum>
 </release>
</releases>

Multiple golden device checksums are possible for each system depending on the
specific set up options.
For instance, enabling or disabling Intel TXT would change the system PCR0
checksum.

The device checksums can also be set using the admin console of the LVFS:

[image: component checksum]

Adding PCR0 checksums to a component for attestation

Vendor Provenance

The LVFS only allows OEMs, ODMs and silicon vendors to upload firmware.
Some OEMs allow the ODM to QA firmware on their behalf and for this reason there
are strictly controlled “affiliate relationships” defined on the LVFS.

Furthermore, the AppStream prefix is checked on upload, to prevent the vendor
trying to replace or inpersonate another vendors legitimate firmware.
This namespacing keeps the OEMs firewalled from each other.

Client side there is another check which verifies the uploader of the firmware
has the matching set of restrictions for the USB or PCI-assigned vendor ID.
For instance, Hughski Limited can only deploy firmware onto devices with
VendorId=USB:0x273F and so even if the LVFS account for this company was hacked
they could not update firmware from Logitech or Wacom.

Source URL

All firmware licensed with a GPL-like license must include links to the exact
source release used to build the firmware update.
This claim is only shown for firmware that requires a source URL, although can
be included even for non-open-source firmware if required.

Virus Safe

All firmware uploaded to the LVFS gets scanned by the ClamAV security scanner.
Additionally, when the firmware is no longer embargoed and available to the
public it is uploaded to VirusTotal for further anaysis.

FwHunt

Most UEFI firmware images uploaded to LVFS are scanned by the Binarly FwHunt community scanner
to check for publicly disclosed security issues. Security issues still under vendor embargo are
not detected.

Any potential issues detected are visible to the OEM vendor and uploader, but are not shown to end
users. When a firmware image has a detectable issue, the exact details will not be displayed here.

Firmware is scanned with the latest set of public rules at upload time, and may be scanned again at
a later date when new rules become available.

Please contact Binarly [https://binarly.io/] if you would like more details about FwHunt technology.

End-of-Life

Some devices can be marked as “end-of-life” as they are no longer supported by
by the original OEM.
These are unlikely to get updates to fix critical security problems.

Software Bill of Materials

All firmware uploaded to the LVFS gets scanned for both CoSWID data embedded in
the SBOM section of the COFF binaries, but also uSWID external metadata.

For instance, there may be embedded CoSWID metadata in 75 PE files, where each
EFI binary contributes information to the composite package SBoM.
This is possible as we can include the CoSWID metadata in the PE files at build
time, generating accurate data automatically.

Sometimes it is not possible is in embed the CoSWID metadata directly into a
proprietary or vendor-specific section, e.g. AMD microcode or Intel FSP.
For these binary blobs it’s expected that the IVH or the system integrator will
generate some external metadata about the non-free blob and include it in the
system image somehow.
This might be in an FV section for an EFI image, the DT for an ARM image, or
just appended as raw data in a free section in the ROM file.

You also either use uswid directly [https://github.com/hughsie/python-uswid],
or the online generator [https://fwupd.org/lvfs/uswid] to build the external
SBoM data for the binary deliverable.

If multiple uSWID SBoM metadata sections are detected then they are appended.

User Telemetry

By allowing fwupd to phone home after attempting a firmware update,
it allows the hardware vendor that uploaded firmware to know there are
problems straight away, rather than waiting for frustrated users to file bugs.

The report contains information that identifies the machine and
old/new firmware versions, and in the event of an error, enough debug
information to actually be useful.
It obviously involves sending the user’s IP address to the server too.

We have to be exceptionally careful with users’ privacy and trust.
We cannot just enable automated collection, and this document outlines what
we implemented for fwupd >= 1.0.4.
This functionality should be acceptable to even the most paranoid of users.

The fwupd daemon stores the result of each attempted update in a local SQLite
database.
In the event there is a firmware update that has been attempted, we now ask the
user if they would like to upload this information to the LVFS.
Using GNOME this would just be a slider in the control center privacy panel,
although this feature is currently unimplemented.

If the user is using the fwupdmgr tool this is what it shows:

$ fwupdmgr report-history
Target: https://the-lvfs-server/lvfs/firmware/report
Payload: {
 "ReportVersion" : 1,
 "MachineId" : "9c43dd393922b7edc16cb4d9a36ac01e66abc532db4a4c081f911f43faa89337",
 "DistroId" : "fedora",
 "DistroVersion" : "27",
 "DistroVariant" : "workstation",
 "Reports" : [
 {
 "DeviceId" : "da145204b296610b0239a4a365f7f96a9423d513",
 "Checksum" : "d0d33e760ab6eeed6f11b9f9bd7e83820b29e970",
 "UpdateState" : 2,
 "Guid" : "77d843f7-682c-57e8-8e29-584f5b4f52a1",
 "FwupdVersion" : "1.0.4",
 "Plugin" : "unifying",
 "Version" : "RQR12.05_B0028",
 "VersionNew" : "RQR12.07_B0029",
 "Flags" : 674,
 "Created" : 1515507267,
 "Modified" : 1515507956
 }
]
 }
Proceed with upload? [Y|n]:

Using this new information that the user volunteers, we display a few new
sections in the LVFS web-console:

[image: report]

Firmware view showing the report

Which expands out to the report below:

[image: report details]

Report details

This means vendors using the LVFS know the approximate number of successes and
failures, and can add different tests to existing QA tests accordingly.
This allows the LVFS to automatically pause the specific firmware deployment if > 1%
of the reports come back with failures.

Some key points:

	We do not share the IP address with the vendor, and it is not even saved in
the database

	The MachineId is a salted hash of the machine /etc/machine-id

	The LVFS does not store reports for firmware that it did not sign itself,
i.e. locally built firmware archives will be ignored and not logged

The user can disable the reporting functionality in all applications by
editing /etc/fwupd/remotes.d/*.conf

Vendor Summary

Using firmware telemetry overview a vendor can see all the success and
failure reports for all the firmware uploaded to their vendor:

[image: vendor telemetry]

Telemetry of all firmware

Until more people are running the latest fwupd and volunteering to share their
update history it is less useful, but still interesting until then.

Known Issues

Known issues are problems we know about, and that can be triaged automatically
on the LVFS.
Of course, firmware updates should not ever fail, but in the real world they do,
Of all the failures logged on the LVFS, 95% fall into about 3 or 4 different
failure causes, and if we know hundreds of people are hitting an issue we
already understand we can provide them with some help.

A good example here is the user not being on AC power when rebooting, which
causes a failure, albeit transient and non-fatal.
Another example is if the user tries to do the update with an incorrect system
configuration, for instance a missing /boot/efi partition.

[image: known issue]

Notifying the user about known issues

The URL for the user to click on is the result of a rule engine being included
in the LVFS.
Users on the LVFS with the appropriate permissions can also create and view
rules for firmware owned by just their vendor group:

[image: issue conditions]

Issue conditions

[image: issue details]

Issue details

[image: all issues]

All issues

Custom Protocol

The fwupd project already supports a huge number of flashing protocols [https://github.com/fwupd/fwupd/tree/master/plugins],
everything from standardized protocols like NMVe, ATA, DFU and also a large number
of vendor-specfic protocols like logitech_hidpp, synaptics_prometheus and wacom_raw.

Most vendors are using a protocol that fwupd already supports, and thus only
need to upload firmware to the LVFS. In the case applying for an account is all
that is required.

Note

If using DFU, please also implement the DFU runtime interface – this allows
fwupd to automatically switch your device into bootloader mode without having to
draw some artwork and write some translated text to explain how the user should
persuade the device to enter update mode.

The easiest time to add support for updating hardware using the LVFS is during
the project prototype phase.
There are several things you can do that makes writing a fwupd plugin much easier.

In the case where the device protocol is a non-compatible variant or a completely
custom protocol then a new fwupd plugin will be required.
If you have to use a custom protocol, there are a few things that are important
to consider.

The fwupd daemon needs to be able to enumerate the device without the user noticing,
which means LEDs should not blink or cause the screen to flicker.
Disconnecting a kernel driver, changing to bootloader mode or any other method
of getting the device firmware version is not acceptable.
This means the device needs to expose the current firmware version on the runtime
interface, for instance using USB descriptors or PCI revision fields.

For composite devices (e.g. docks) it is much better to provide an interface to
query the internal device topology rather than hardcoding it in the plugin or in
a quirk file.
For instance, fwupd could query the root device that would respond that it is
acting as a I²C bridge to a HDMI chip with address 0xBE, rather than hardcoding
it for a specific dock model.
Querying the information allows the plugin author to write a generic plugin that
means future devices can be upgraded without waiting for new fwupd versions to
be included in popular Linux distributions and ChromeOS.

Warning

Plan and test for what happens when the user
disconnects the USB cable, runs out of battery, or removes the mains plug when
the new firmware is being flashed.

If the device remains in bootloader mode, is there a unique VID/PID that can
be used to choose the correct firmware file to flash the device back to
a functional runtime mode?

Many vendors just use the ISV-provided reference bootloader (which is fine),
but fwupd does not know which runtime image to recover with if the ISV-allocated
generic VID/PIDs are being used.
If it is not possible to modify the bootloader VID/PID, then it may be possible
to read a block of NVRAM at a hardcoded offset to identify the proper firmware
to install.

When updating hardware it is important to provide feedback to the user so that
they know the process has not hung.
Updating firmware is intimidating to many users and so it is important to provide
information about what is being done to the hardware, for instance erasing,
writing and verifying.
It is also a very good idea to provide percentage completion, so for an operation
that is going to take 10 seconds it is better to write 1024 blocks of 16kB with
percentage updates after each block rather than one block of 16Mb with just a
bouncing progressbar.

Note

It is not possible to upload executable flasher code as part of the cabinet
archive – only the payload is allowed.

We will not accecpt non-free executables, static libraries or “shim” layers
in fwupd. The only way a custom protocol can be supported is by contributing
a LGPL-2.1-or-later plugin upstream.

Some vendors will have the experience to build a plugin themselves, and some vendors
may wish to use a consulting company [https://fwupd.org/lvfs/docs/consulting]
that has the required experience.

Intellectual Property Concerns

The plugin code in fwupd is Open Source (LGPL-2.1-or-later), licensed in a way that makes
it possible for another vendor or an end-user to read and modify the code.
Some companies have initially said that an open source plugin would be
impossible due to concerns about either trade secrets, security or both.
Let’s look at the trade secret or intellectual property concern by answering
some questions:

	How many firmware updater binaries were sold last year?

	Is the update protocol significantly more complicated than read version
number, switch to bootloader, erase blocks, write blocks, read back
blocks to verify, switch to runtime?

	Can a user dump the USB communication using a $20 capture tool and replay the
recording to update a different device?

	Is the shared secret token sent unencrypted as part of the update protocol?

The fact is that most OEM vendors sell physical devices to consumers and both
the hosting of updates on a company webserver and the development of the update
client itself is typically a cost-centre, and not a revenue stream.
The fwupd project supports more than 80 different update protocols, and most of
them use exactly the same design; there may be differences in required header
format or CRC32 polynomials, but 95% of “secret vendor protocols” are almost
exactly the same from a high-level design perspective – and thus do not
constitute valuable intellectual property.

[image: Wireshark dump showing unencrypted data transfer]

Wireshark dump showing unencrypted data transfer

Another important consideration is that the fwupd plugin doesn’t need to know
everything about the hardware – for instance, in the Synaptics MST plugin we
know the offset in the configuration header of the current firmware version,
but the rest of the header is unspecified and still secret.
In the PixArt plugin we know the offset of the 32 bit AA.BB.CC.DD version
number, but the rest of the file is treated as a binary blob that is just sent
to the device in small sections.

Another concern from vendors is that as an open source project, anyone can edit,
modify, or even sabotage code that communicates with their device.
Of course, the maintainers of the fwupd project will review and check carefully
every proposed change.
Most plugins also have tests that emulate that specific device firmware update –
that get verified for each and every proposed change.
Any plugins that require stronger “ownership” requirements can also add an
Owners section in the per-plugin README.md file that will be used to notify
responsible users that validation or functional re-testing is required before a
change is merged.

Some vendors are also unwilling to agree to an open source plugin to fwupd as
the payload will be discovered as unsigned or communication is unencrypted,
and attackers will know how to attack the devices.
Unfortunately, it’s very easy to scan a firmware payload for signatures or even
to calculate the entropy.
It’s even possible to perform a manual bitswap in something like the USB
descriptor to know if the payload signature is being verified correctly.
Security through obscurity has never been acceptable, and hackers are more than
capable of dumping an unencrypted firmware update process and then modifying
the code to inject malware.
An attacker does not care about having source code through legitimate means and
does not need permission.

The answer is either to properly implement firmware signing, or to just be okay
that the current device has unsigned firmware.
It is completely acceptable for devices to not implement firmware signing for
example with OpenHardware devices, or devices where the user is encouraged to
build custom firmware.
The LVFS only allows vendors to update their own hardware (e.g. Wacom can only
update devices with USB vendor ID of 0x056A) and so it is not possible for
another vendor to automatically update firmware on your hardware, even if the
payload is unencrypted or unsigned.

On a similar note, some vendors will not want to open the update protocol as it
would allow consumers to flash the “pro” version of a firmware to the “basic”
device to software-unlock features that are usually only available in a more
expensive model.
Whilst this is a concern if the two devices have the same signing key (they
should have different keys) or if they have no signing requirement at all –
it’s very easy to fool even official non-free binary updater programs just by
changing how the Windows/Linux kernel reports either the device USB VID/PID
or USB HID descriptor.
From real world experience, the number of users that are going to disable the
device checks in an open source project (a risky procedure) is going to be a
staggeringly small number of people compared to the number of people that will
be able to update the correct hardware with the latest firmware.

Turning this around completely, many vendors who have added new fwupd plugins
have found that the RMA (return merchandise authorization) rate for hardware
has actually reduced significantly.
This is because the newer firmware fixes a bug, for instance a USB-4 dock not
working with their existing DisplayPort monitor – where it does work with the
latest dock firmware applied.
Similarly, users may choose the consumer device or peripheral exactly because
it has a fwupd support, and because firmware updates can be managed at scale
using Windows, Linux, macOS or ChromeOS.

Depending on a new library

Please do not use model-specific or vendor-specific libraries to update or
enumerate the hardware.
Unless the library is already shipped by default on Ubuntu LTS and RHEL 8 then
it is going to be exceptionally hard to use this library in fwupd.
As fwupd is in main for Ubuntu then any library it depends on must also be
part of main, which means Canonical has to officially support it.
They obviously do not want to do this for vendor-specific libraries that have
only existed for a few years with no API or ABI guarantees or long term stable branches.

Similarly for Red Hat; any new library or binary needs to have a Red Hat maintainer
who will support it for over 10 years (!) and is willing to do the security due
diligence and code review required to be included as a core package in RHEL.
Getting approval for a new package is a huge amount of work and takes months.

As fwupd is running as root, any external library it depends on must be audited
by several security teams, and have a proven security plan in place.
Google also needs to review any new dependencies as fwupd is also being used
heavily in ChromeOS now, and they take OS image size and security very seriously.

In this situation it is completely okay to include parts of the open source
library (assuming the code can be licensed as LGPL-2.1-or-later) in the fwupd plugin.
Including them in fwupd plugins also allows us to use the fwupd helper functionalily,
for instance replacing memcpy() with fu_memcpy_safe() and using high level
abstractions for reading and writing to sysfs files or an ioctl.
Many plugins already do this, for instance the colorhug plugin does not use
libcolorhug, nvme plugin does not use the nvme command line tool and
the emmc plugin itself defines EXT_CSD_FFU rather than depending on mmc-utils.

Building fwupd

Please see the fwupd documentation [https://fwupd.github.io/libfwupdplugin/building.html].

Security

There are many layers of security in the LVFS and fwupd design, including restricted account modes,
2 factor authentication, and server side AppStream namespaces.

The most powerful one is the so-called vendor-id that the vendors cannot assign themselves,
and is assigned by a member of the LVFS admin team when creating the vendor account on the LVFS.
The way this works is that all firmware from the vendor is tagged with a requirement like
USB:0x056A which matches the USB consortium vendor assigned ID.

Client side, the vendor-id from the signed metadata is checked against the physical device
and the firmware is updated only if the ID matches.
This ensures that malicious or careless users on the LVFS can never ship firmware updates for other
vendors hardware.
All vendors on the LVFS are now locked down with this mechanism.

Some vendors have to use IDs that they do not own, a good example here is for a DFU device like
the 8BitDo controllers.
In runtime mode they use the USB-assigned 8BitDo VID, but in bootloader mode they use a generic VID
which is assigned to the chip supplier as they are using the reference bootloader.
This is obviously fine, and both vendor IDs are assigned to 8BitDo on the LVFS for this reason.

Another example is where Lenovo is responsible for updating Lenovo-specific NVMe firmware, but
where the NVMe vendor is not using the Lenovo PCI ID.

All devices exported by fwupd must have at least one vendor ID, mostly automatically added as the
vast majority derive from either FuUsbDevice or FuUdevDevice.

The vendor IDs can be dispayed using fwupdmgr get-devices.

UEFI UpdateCapsule

Capsule updates are a popular way to distribute firmware updates.
As the ESRT convays no vendor ownership information, we use the platform DMI data.
For instance Lenovo is only able to update Lenovo hardware with DMI:Lenovo.

Privacy Report

We hold personal data about vendors, administrators, clients and other
individuals for a variety of purposes.
This policy sets out how we seek to protect personal data and ensure that
administrators understand the rules governing their use of personal data to
which they have access in the course of their work.
In particular, this policy requires that the Data Protection Officer (DPO) be
consulted before any significant new data processing activity is initiated to
ensure that relevant compliance steps are addressed.

Scope

This policy applies to all users who have access to any of the personally
identifiable data.

Who is responsible for this policy?

As the Data Protection Officer, Richard Hughes.
has overall responsibility for the day-to-day implementation of this policy.
The DPO is registered with the Information Commissioner’s Office (ICO) in the
United Kingdom as a registered data controller.

Fair and lawful processing

We must process personal data fairly and lawfully in accordance with individuals’ rights.
This generally means that we should not process personal data unless the
individual whose details we are processing has consented to this happening,
or where such collection is unavoidable and/or considered pragmatic in the
context, e.g. logging the number of downloads of a particular file.

We do not consider an IP address to represent a single user (due to NAT or VPN use),
and as such metadata requests are not considered personal data using the draft GDPR guidelines.

Accuracy and relevance

We will ensure that any personal data we process is accurate, adequate,
relevant and not excessive, given the purpose for which it was obtained.
We will not process personal data obtained for one purpose for any unconnected
purpose unless the individual concerned has agreed to this or would otherwise
reasonably expect this.
Individuals may ask that we correct inaccurate personal data relating to them.
If you believe that information is inaccurate you should inform the DPO.

Your personal data

You must take reasonable steps to ensure that personal data we hold about
hardware vendors is accurate and updated as required.
For example, if your personal circumstances change, please update them using
the profile pages or inform the Data Protection Officer.

Data security

We keep personal data secure against loss or misuse.
Where other organizations process personal data as a service on our behalf,
the DPO will establish what, if any, additional specific data security
arrangements need to be implemented in contracts with those third party
organizations.

Storing data securely

All data is stored electronically.
All documents and code are held on a locked LUKS partition with a password
adhering to security best practices.

Data retention

We must retain personal data for no longer than is necessary.
What is necessary will depend on the circumstances of each case, taking into
account the reasons that the personal data was obtained, but should be
determined in a manner consistent with our data retention guidelines.
Anonymized user data (e.g. metadata requests) will be kept for a maximum of
5 years which allows us to project future service requirements and provide
usage graphs to the vendor.

Transferring data internationally

There are restrictions on international transfers of personal data.
We do not transfer personal data anywhere outside the EU without the approval
of the Data Protection Officer, unless required to do so by law.

Subject Access Requests

Please note that under the Data Protection Act 1998, individuals are entitled,
subject to certain exceptions, to request access to information held about them.

On receiving a subject access request, we will refer that request immediately
to the DPO. We may ask you to help us comply with those requests.
Please also contact the Data Protection Officer if you would like to correct
or request information that we hold about you.
There are also restrictions on the information to which you are entitled under
applicable law.

Processing data

We will never use identifiable vendor data for direct marketing purposes.

GDPR Provisions

Where not specified previously in this policy, the following provisions will
be in effect on or before 11 November 2020.

Transparency of data protection

Being transparent and providing accessible information to individuals about how
we will use their personal data is important for our project.
The following are details on how we collect data and what we will do with it:

Firmware Vendor Information

	What: The hardware vendor name, password, GPG public key and content of original
uploaded firmware files.

	Why collected: Secure authentication, to allow any possible future audit
and to provide authorized users access to signed firmware files.

	Where stored: AWS hosted PostgreSQL database in Oregon, USA region.

	When copied: Full backups weekly, with daily snapshots both to AWS backup.

	Who has access: The hardware vendor (filtered by the QA group), Linux
Foundation Infrastructure Team and the DPO.

	Wiped: When the vendor requests deletion of the user account.

Service Event Log

	What: IP address (unhashed) and REST method requested, along with any error.

	Why collected: Providing an event log for checking what the various
hardware vendors are doing, or trying to do.

	Where stored: AWS hosted PostgreSQL database in Oregon, USA region.

	When copied: Full backups weekly, with daily snapshots both to AWS backup.

	Who has access: The hardware vendor (filtered by the QA group), Linux
Foundation Infrastructure Team and the DPO.

	Wiped: When the QA group is deleted.

Firmware Download Log

	What: IP address, timestamp, filename of firmware, user-agent of client.

	Why collected: To know what client versions are being used for download,
and to provide a download count over time for a specific firmware file.

	Where stored: AWS hosted PostgreSQL database in Oregon, USA region.

	When copied: Full backups weekly, with daily snapshots both to AWS backup.

	Who has access: The hardware vendor (filtered by the QA group), Linux
Foundation Infrastructure Team and the DPO.

	Wiped: When the firmware is deleted, but the client IP address is cleared after 3 years.

Firmware Reports

	What: Machine ID (hashed), failure string and checksum of failing file,
OS distribution name and version.

	Why collected: Allows the hardware vendor to assess if the firmware update
is working on real hardware.

	Where stored: AWS hosted PostgreSQL database in Oregon, USA region.

	When copied: Full backups weekly, with daily snapshots both to AWS backup.

	Who has access: The hardware vendor (filtered by the QA group), Linux
Foundation Infrastructure Team and the DPO.

	Wiped: When the firmware is deleted.

We will ensure any use of personal data is justified using at least one of
the conditions for processing and this had been specifically documented above.

Consent

The data that we collect is subject to active consent by the data subject.
This consent can be revoked at any time.
Revoking consent to use data ends any vendor relationship with the LVFS.

Data portability

Upon request, a data subject should have the right to receive a copy of their
data in a structured format, typically an SQL export.
These requests should be processed within one month, provided there is no
undue burden and it does not compromise the privacy of other individuals.
A data subject may also request that their data is transferred directly to
another system. This is available for free.

Right to be forgotten

A vendor may request that any information held on them is deleted or removed,
and any third parties who process or use that data must also comply with the request.
An erasure request can only be refused if an exemption applies.

Privacy by design and default

Privacy by design is an approach to projects that promote privacy and data
protection compliance from the start.
The DPO will be responsible for conducting Privacy Impact Assessments and
ensuring that all changes commence with a privacy plan.
When relevant, and when it does not have a negative impact on the data subject,
privacy settings will be set to the most private by default.

Data audit and register

Regular data audits to manage and mitigate risks will inform the data register.
This contains information on what data is held, where it is stored,
how it is used, who is responsible and any further regulations or retention
timescales that may be relevant.

Reporting breaches

All users of the LVFS have an obligation to report actual or potential data
protection compliance failures. This allows us to:

	Investigate the failure and take remedial steps if necessary

	Maintain a register of compliance failures

	Notify the Supervisory Authority (SA) of any compliance failures that are
material either in their own right or as part of a pattern of failures

Please refer to the DPO for our reporting procedure.

Monitoring

Everyone who actively uses the LVFS must observe this policy.
The DPO has overall responsibility for this policy.
They will monitor it regularly to make sure it is being adhered to.

Consequences of Failing to Comply

We take compliance with this policy very seriously.
Failure to comply puts both you and us at risk.
The importance of this policy means that failure to comply with any requirement
may lead to disciplinary action under our procedures.
If you have any questions or concerns about anything in this policy,
do not hesitate to contact the DPO.

Offline Firmware

The LVFS [https://fwupd.org/lvfs/] is a public webservice designed to allow
OEMs and ODMs to upload firmware easily, and for it to be distributed securely
to tens of millions of end users. For some people, this simply does not work
for various reasons:

	They don’t trust the LVFS team, fwupd.org, GPG, certain OEMs or the CDN we use

	They don’t want thousands of computers on an internal network downloading all
the files over and over again

	The internal secure network has no internet connectivity

For these cases there are a few different ways to keep your hardware updated,
in order of simplicity:

Deploy in immutable image

If the OS is shipped as an image, you can just install the .cab files into
/usr/share/fwupd/remotes.d/vendor/firmware and then enable vendor-directory.conf
with fwupdmgr enable-remote vendor-directory.

Then once you have disabled the public LVFS using fwupdmgr disable-remote lvfs,
running fwupdmgr will use only the cabinet archives you deploy in your
immutable image.
Of course, you’re deploying a larger image because you might have several unused
firmware files included for each image, but this is how Google Chrome OS is using
fwupd.

Mirror the public firmware

Using pulp-server

You can use Pulp [https://pulpproject.org/] to mirror the entire public
contents of the LVFS (but never private or embargoed firmware).
Create a repo pointing to PULP_MANIFEST [https://cdn.fwupd.org/downloads/PULP_MANIFEST]
and then sync that on a regular basis to download the metadata and firmware.
The contents will not change any more frequently than every 4 hours, so please
use a polling interval of at least that.

Using a helper script

There is a helper script sync-pulp.py [https://gitlab.com/fwupd/lvfs-website/raw/master/contrib/sync-pulp.py]
that can be used if pulp-server is not installed:

./contrib/sync-pulp.py https://cdn.fwupd.org/downloads /mnt/mirror

You can then use a webserver such as Nginx or Apache to export /mnt/mirror
as https://my.private.server/mirror.

Then, disable the LVFS by deleting or modifying /etc/fwupd/remotes.d/lvfs.conf
and then create a /etc/fwupd/remotes.d/myprivateserver.conf file:

[fwupd Remote]
Enabled=true
Type=download
MetadataURI=https://my.private.server/mirror/firmware.xml.gz
FirmwareBaseURI=https://my.private.server/mirror

To instead mirror the private embargoed files, you can use:

./contrib/sync-pulp.py https://cdn.fwupd.org/downloads /mnt/mirror \
 --username=login@name.com \
 --token=XA1A5ZV7R65FUZBZ

Warning

Do not use your login password here! Generate a token when logged in to the
LVFS using the User Profile [https://fwupd.org/lvfs/profile] settings.

To restrict the downloaded firmware to a specific tag (perhaps a vendor Best Known Configuration)
use the following command:

./contrib/sync-pulp.py https://cdn.fwupd.org/downloads /mnt/mirror \
 --filter-tag=hughski-2020q1

Note, this command can be run safely multiple times with different --filter-tag values on the
same destination directory; the superset of files will be downloaded.

Approved firmware

By exporting the entire LVFS (including the metadata, and metadata signature)
you can still delay the deployment of firmware.
Using the approved firmware list the client can filter out firmware that has not
been tested by your organization without creating and signing a custom remote.

The allow-list of firmware can be set using:

fwupdmgr set-approved-firmware checksum1,checksum2,checksum3

Some versions of fwupd (>= 1.7.1) also support loading the list of checksums
using a filename, e.g.

fwupdmgr set-approved-firmware filename

…where checksum is the SHA1 or SHA256 checksum of the .cab archive.

Note

The org.freedesktop.fwupd.set-approved-firmware PolicyKit action
may require root permission to use.

Export a shared directory

Again, use PULP_MANIFEST to create a big directory holding all the firmware
(currently ~50GB, but growing), and keep it synced.

Create a NFS or Samba share and export it to clients. Map the folder on each client,
and then create a myprivateshare.conf file in /etc/fwupd/remotes.d:

[fwupd Remote]
Enabled=false
Title=Vendor
Keyring=none
MetadataURI=file:///mnt/myprivateshare/fwupd/remotes.d/firmware.xml.gz
FirmwareBaseURI=file:///mnt/myprivateshare/fwupd/remotes.d

Downloading manually

Download the .cab files that match your hardware and then install them
on the target hardware via Ansible [https://www.ansible.com/] or
Puppet [https://puppet.com/] using fwupdmgr install foo.cab. You can also
use fwupdagent get-devices to get the existing firmware versions of all
hardware in a format you can parse from scripts.

Building a custom remote

The local.py [https://gitlab.com/fwupd/lvfs-website/-/blob/master/local.py]
script allows you to create the metadata for a directory of .cab files.

Note

If you want to use signed metadata then please use
jcat-tool firmware.xml.gz.jcat firmware.xml.gz CERTIFICATE PRIVATE_KEY.
You will need to create a custom certificate [https://github.com/hughsie/libjcat#public-key-signing]
and you’ll also need to distribute the the PKCS#7 certificate on all clients
that are going to use the remote.

Create your own LVFS

The LVFS is a free software Python 3 Flask application and an instance can be set up
internally if required. You have to configure much more this way, including
generating your own GPG and PKCS#7 keys, uploading your own firmware and setting
up users and groups on the server.

Doing all this has a few advantages, namely:

	You can upload each firmware file and QA it, only pushing it to stable when ready

	You don’t ship firmware which you didn’t upload

	You can control the staged deployment, e.g. only allowing the same update to
be deployed to 1000 servers per day

	You can see failure reports from clients, to verify if the deployment is going well

	You can see nice graphs about how many updates are being deployed across your organization

However, running a secure LVFS instance is a lot of work as PostgreSQL has to be
used as a database, Redis has to also be set up as a queue manager, and Celery
is used to manage the worker queues.

Although minor versions of the LVFS can be upgraded easily, you should review all
the commits to lvfs-website to ensure that any manual migration is also performed.

Product Certification

[image: logo]

Introduction

We want to make it easy for ODMs and OEMs to choose components that already have fwupd plugin support.
This will do a few things:

	The onus is pushed onto the IHV to maintain the plugin not the OEM, ODM or Linux distributor (e.g. Red Hat)

	The ODM and OEM will prefer components that do not require any software development work to pass
the Works With ChromeBook (WWCB) and Red Hat Enterprise Linux (RHEL) hardware certifications

	Having a fwupd plugin will be seen as a commercial advantage for the IHV

There are two versions of the fwupd friendly firmware certification, one for devices that will
only accept signed firmware (signed-payload) and another for insecure hardware that does not
implement cryptographic signing (unsigned-payload).
Either is fine from a fwupd plugin point-of-view, but some OEMs will have a policy that forces them
to choose hardware that cannot be altered by the end user.

Note

Consumer devices end-users buy from the store are not suitable for fwupd friendly firmware,
and already have device pages [https://fwupd.org/lvfs/devices/] on the LVFS.

Requirements

To register a device for fwupd friendly firmware the original silicon vendor must have an existing
LVFS vendor account, and also provide:

	Device model, e.g. CX2098X

	One line summary, e.g. USB3.2 Gen1 4-port hub controller

	Link to the device page, e.g. https://www.kinet-ic.com/ktm50x0/ (optional)

	Link to the upstream fwupd plugin that handles this device type, e.g. https://github.com/fwupd/fwupd/tree/main/plugins/synaptics-cxaudio

	Device firmware certification level, e.g. always signed, optionally signed, or unsigned

	Hash and signature algorithm used for firmware signing, e.g. SHA256+RSA2048, or n/a

To add a device to the certification page [https://fwupd.org/lvfs/vendors/prodcerts],
please send an email to the
mailing list [https://lists.linuxfoundation.org/mailman/listinfo/lvfs-general]
with the required details.
On meeting the requirements, the entry will be added and then the vendor is allowed use the signed or
unsigned fwupd friendly firmware logo as required.

[image: *fwupd friendly firmware*]

logo for fwupd friendly firmware (always signed)

[image: *fwupd friendly firmware*]

logo for fwupd friendly firmware (optionally signed)

[image: *fwupd friendly firmware*]

logo for fwupd friendly firmware (unsigned)

Note

Vendors should not have a “generic” fwupd friendly firmware assigned to them, as a vendor may
have multiple devices with different update protocols. e.g. Synaptics has cxaudio, mst,
prometheus and cape protocols, each with a different fwupd plugin.

Conclusion

Vendors using the fwupd friendly firmware logo mark will make it easier for product creators to
support firmware updates for Linux users.
The burden of development moves earlier to the IHVs rather than later to the OEMs.
OEMs can verify the fwupd friendly firmware certification and compare hardware using the public
pages on the LVFS.

LVFS Releases

1.5.2 (2024-05-07

	This release adds the following features:
	
	Add an API endpoint to get firmware status

	Add documentation for firmware testing using Moblab and ChromeOS

	Add support for mirroring PULP remotes

	Add support for multiple project licenses

	Add support for not_hardware requirements

	Add support for SHA-384

	Add support for zstd metadata

	Add the firmware SBoM specification

	Allow adding positive vendor relationships in the vendor list

	Allow exporting SWID and SPDX from the SBoM helper

	Allow QA users to list and delete thier own signed reports

	Allow SPDX license aliases

	Allow uploading offline reports

	Include <developer_name> in the archive

	Put the component install duration in the metadata if provided

	Require vendors to set the Username and Password when downloading embargoed metadata

	Save the BT logindex in the JCat file

	Show anonymous success reports in the device page

	Show if the release has verified reports on the OEM device page

	Show the release gating on the device page

	Show which problems block what remote

	Sign the SHA256 hash as well as the payload

	Support per-release priorities

	This release removes the following features:
	
	Do not allow adding duplicate requirements

	Do not allow over-long sumary text

	Do not allow the GUID tests to be waived

	Do not offer updates to very old fwupd versions

	Enforce that UEFI devices have the vendor-id set in the embargo metadata

	Remove support for PSPTool

	Remove the ‘unrestricted’ vendor feature

	This release fixes the following bugs:
	
	Add 6 bytes of random data to the JcatFile to fix a CDN issue

	Add an fsck action for the component download size

	Allow 100% generic components as we’re using them for metadata

	Allow accepting reports for DoNotTrack firmware

	Allow cancelling lvfs.reports.utils.task_regenerate

	Allow more revisions in the gz and xz embargo remotes

	Allow searching by GUID in the public search

	Allow showing firmware supporting a specific protocol

	Allow the admin to unwaive a test

	Auto-demote firmwares uploaded to embargo with problems

	Automatically add a fwupd requirement when adding a CHID

	Catch a DER decode error when looking for certs

	Check the useragent before the ClientAcl

	Correctly add device checksums on upload

	Do not crash when searching for a device with NUL chars

	Do not fail to sign firmware if services.nvd.nist.gov is unavailable

	Do not purge deleted immutable firmware

	Do not show a ‘Move here’ button when embargo rebuilt would fail

	Do not use absolute URIs in the xz metadata

	Do the abuse check before the GeoIP lookup

	Fix a backtrace when clamav isn’t installed

	Fix a worker crash when claims are not present

	Fix certificates with UTF-16 RFC-2459 descriptions

	Fix invalid metadata licenses

	Fix the task worker when trying to parse invalid NIST NVD payload data

	Handle the VINCE server exploding

	Include a fwupd requirement for a CHID requirement

	Lower the number of concurrent db connections

	Migrate from Owl to Swiper for quotes

	Never add duplicate content to PULP_MANIFEST

	Never use the CDN for firmware images

	Only add AppStream prefixes when required

	Port the NIST NVD plugin to new API

	Ramp up the warning about pushing updates without test reports

	Reduce the scope of the CSP

	Regenerate the metadata less frequently

	Rename com.intel.Uefi to org.uefi

	Re-run the tests when changing the AppStream ID

	Run the local development instance with SSL

	Sort the devices by version in the device pages

	Update the firmware failure count when adding known issues

	Update the firmware report count when deleting a report

	Use the CDN for many more public files

1.5.1 (2023-05-05

This release adds the following features:

	Add a nudge to people using obsolete fwupd versions to upgrade

	Add --cleanup to sync-pulp.py to remove old archives

	Add documentation for testing on ChromeOS

	Add HSI attribute downloads in JSON format

	Add the ability to block abusive clients by IP address

	Allow adding per-protocol device flag values

	Allow downloading firmware and uploading reports with basic auth

	Allow uploading firmware assets like emulation data

	Block clients automatically when abuse is detected

	Require a User-Agent header to serve archives

	Set the FromOEM report key in the metadata

	Show category icons on the device list page

	Show if a vendor has a PSIRT team and show the link in more places

This release removes the following features:

	Remove firmware limits feature as it was unused and complicated the code

	Remove inf parsing as it is no longer required and was a footgun for vendors

This release fixes the following bugs:

	Actually save a firmware.xml.xz newest file to make debugging easier

	Add more banned things to the name checks

	Add ne to the simple component requirements page

	Allow users to export the SWID data for public firmware

	Block the generic useragent of Mozilla/5.0

	Convert icon battery into category X-Battery

	Do GeoIP lookups on IPv6 data too

	Do not store broken report attributes

	Ensure that the newest metadata files are invalidated

	Fix a crash when using %00 in URLs

	Never include empty <client/> requirements

	Only dedupe the requirements exactly

	Resign any files with artifact type=binary

	Show a link to the firmware when uploading a duplicate

	Store all firmware container checksums

	Update requirements to fix security bugs in dependencies

	Use newline for multiline settings values

	Use the display version to sort components in the search results

1.5.0 (2023-01-03)

This release adds the following features:

	Add a fsck action for the VersionFormat, release_tag, shard info GUIDs and key checksum

	Add a user-visible claim for a detected SBoM

	Add a waiveable test failure on system integrity report failure

	Add BootGuard shards when extracting UEFI firmware

	Add interesting public test failures to the mdsync export

	Add new update categories like X-UsbDock and X-UsbReceiver

	Allow filtering by tag when using sync-pulp.py

	Allow setting the update message and image per-protocol

	Cache the public pages to reduce load

	Do not allow all protocols to use the X-Device category

	Enforce no duplicate objects in the db layer

	Enforce that release timestamp is not >2 years in the future or past

	Generate additional xz metadata for a 25% size saving

	Generate the PULP_MANIFEST at remote regeneration time

	Only allow custom update messages for specific protocols

	Remove the client useragent and country code after 3 years

	Replace Celery with a built-in task scheduler and remove the beat ECS service

	Replace uefi_r2 with fwhunt_scan to support new rules format

	Show the HSI number in more places

	Use a Flask application factory pattern

	Verify the upload was written on EFS

	Warn the QA user when promoting a firmware with no success reports

This release fixes the following bugs:

	Add a more indexes to speed up database access

	Allow choosing non-public protocols in the component view

	Allow running local.py without a database set up

	Allow the QA user to modify the component release date

	Always ignore the first section in the reverse-DNS validation

	Bind to all IPv4 and IPv6 interfaces

	Build the docker container on CentOS 9 Stream

	Check that previous CHIDs are always included in new firmware

	Dedeupe URIs when sending report response

	Detect and fix duplicate users

	Do not assume every AppStream ID with 4 dashes is a GUID

	Do not clear the waived timestamp when retrying a test

	Do not disable 2FA when changing the users password

	Do not export the metadata_license in the AppStream metadata

	Do not fail the UEFI capsule test when using a valid FMP GUID

	Do not garbage-collect old revisions when the latest revision is new

	Do not include empty <device> tags in the metadata

	Do not include the component description in the AppStream metadata

	Do not mark the OTP textbox as ‘password’

	Do not require admin login to download a known shard

	Do not show problems in the search view to fix performance issues

	Do not store the firmware or remote dirty state and use runtime state instead

	Do not use a HTML 404 page when downloading from a client

	Do not use ; to split URIs, it’s a valid char in RFC3986

	Fix a crash when parsing very old HSI reports

	Fix a warning when a PE file has no authenticode signature

	Fix the displayed URLs and display name in the LVFS emails

	Include the vendor name in the mdsync output

	Increase the pulp download timeout to 60s

	Make all the icons symbolic to match gnome-firmware

	Make the eventlog address field more than 40 chars

	Make the HSI aggregated data public

	Move firmware promote and nuke to an async action

	Only add <testing> elements when using artifacts

	Only include the sizes for the artifact

	Prevent duplicate usernames

	Prevent the human user from being the same as the username

	Relax the backdated checks to include older firmware

	Remove all users of _error_internal()

	Remove some unused database columns and obsolete migration scripts

	Remove the hardcoded and duplicated release description text

	Remove the IPFS functionality as it was almost completely unused

	Remove the per-vendor event-log page

	Remove the tests overview page, as this does not scale

	Show a warning when doing an async promotion

	Show the OEM firmware in ‘State :: Embargo’ for ODMs

	Show when a user waived the test in the UI

	Speed up downloading cab archives and most page loads

	Update uSWID to fix reading and writing compressed payloads

	Use less whitespace in the AppStream metadata file

	Use the checksum as the shard absolute path as the name is not always unique

	Use the correct artifact type for metainfo.xml files

	Use the correct status code for mdsync export

	Use the flask debug toolbar when running locally

1.4.0 (2022-05-24)

	This release adds the following features:
	
	Add a progress indicator to the Yara scan

	Add ‘fwupd friendly firmware’ certification

	Add information about what models are EOL

	Add new categories of X-Mouse and X-BaseboardManagementController

	Add support for asynchronous uploads

	Add support for external uSWID+CoSWID sections

	Add the concept of vendor subgroups

	Add device icons of usb-hub and usb-receiver

	Add XLIFF v2 import and export for translation

	Allow auto-moving firmware on defined dates

	Allow creating a GUID from an instance ID

	Allow creating a uSWID blob from form data

	Allow firmware to have multiple ODMs

	Allow importing, exporting and modifying localized update release notes

	Allow marking firmware revisions as immutable

	Allow updates to specify a level of device integrity

	Allow uploading firmware using a username and token

	Analyze Intel microcode versions

	Build metadata into a firmware transparency log

	Export the LVFS component ID into the AppStream metadata

	Get the CVE descriptions description from VINCE and NIST NVD

	Show the metadata upload failures in the UI

	Use name_variant_suffix in the public metadata

	Use signed reports for firmware QA

	Use the CDN to distribute firmware

	This release fixes the following bugs:
	
	Add client requirements to the metadata

	Add more JCat blob kinds

	Allow modifications in the testing target

	Allow OAuth users to modify subgroup and notification settings

	Allow QA users to delete limits

	Allow security researchers to run UEFI R2 scripts

	Allow specifying file:// images that are copied from the archive

	Allow users to share the [possibly private] signed report data

	Check for the duplicate remote before checking problems

	Detect more vendors pasting in Intel SA issues

	Do no merge component with different self requirements

	Do not allow an unsigned report to adjust the output of a signed one

	Do not allow some name_variant_suffix content

	Do not backtrace when trying to compare UTF-8 and UTF-16 text

	Do not export optional component data XML

	Do not force ‘number’ verfmts to hex in the metainfo

	Do not show test passes in uefi_scanner

	Do not split search terms on the hyphen

	Do not use Google Fonts

	Fix a crash when a component description was not set

	Fix crash when old stable firmware has no update description

	Fix runtime exception when checking inactive users

	Ignore markdown elements with control chars

	Make autoimporting issues CSRF-safe

	Make Claim.allow_embargo per-instance, not per-class

	Make the license have an optional clickable URL

	Make the recovery email case insensitive

	Make the update useful word requirement lower

	Move some upload issues to runtime component problems

	Never include ampersands in the revision filename

	Never try to escape missing paragraph text

	No longer detect Intel BIOSGuard

	Remove parsing the developer_name tag

	Remove the vendor description

	Save non-empty UEFI padding sections as shards

	Set a max-age when sending chunked files

	Show a notification if unable to change component values

	Show a warning when a security update is detected without any issues

	Show better verified report output

	Use a bubble graph for the CVE timeline

	Use a volume guids to make UEFI R2 queries much, much faster

	Use the AppStream ID when deduping uploaded firmware

	Use the mirrored release image in more cases

	Verify the AppStream ID was valid if modified

1.3.2 (2021-06-22)

This release adds the following features:

	Add an optional PSIRT URL for each vendor

	Add a plugin which uses uefi_r2 to add shard attributes

	Add support for component soft-requirements

	Allow exporting the embargoed firmware using PULP_MANIFEST

	Allow searching for files by checksum on the internal dashboard

	Allow vendor managers to purge firmware without asking an admin

	Do not overwrite when resigning and use unique filenames for each revision

This release fixes the following bugs:

	Be more helpful when failing to load invalid XML

	Dedupe the component requirements where allowed

	Do not allow the update description to contain the firmware name

	Do not autodecode content when mirroring using sync-pulp.py

	Explicitly set the CDN Cache-Control to be 4 hours by default

	Ask vendors to provide 10 useful release description words

	Include the update images in the PULP_MANIFEST file

	Resign any files that do not include the PKCS#7 certificate

1.3.1 (2021-04-06)

This release adds the following features:

	Add a firmware timestamp that specifies the CVE embargo date

	Add a LVFS component problem if the version format is inconsistent

	Hard require the version format to allow pushing to stable

	Record the reason for moving a firmware to a new remote

	Record the user and when a component issue was added

	Support VINCE security advisory IDs

This release fixes the following bugs:

	Allow setting a vendor default for the .inf firmware parsing

	Allow uploading files with all issue types

	Fix some checksum confusion for duplicate firmware

	Fix unpinning files using Pinata

	Fix warnings with new SQLAchemy versions

	Never include generic components in the mdsync data

	Return JSON for robot uploaders

	Store the old remote ID in the FirmwareEvent

	Use the remote name, not the icon name for mdsync export

	Write the <issue> tags into the AppStream metadata

1.3.0 (2021-02-08)

This release adds the following features:

	Add new page for the latest devices supported

	Add support for the <artifact> AppStream tag

	Add support for the Intel technical advisory issue tags

	Allow adding optional default icons to categories and protocols

	Allow components to specify an optional branch

	Allow exporting the component back to MetaInfo XML format

	Assign a release tag style for specific vendor per-category

	Mirror non-export-controlled public firmware to IPFS

	Provide a healthcheck endpoint

	Send a monthly email about firmware left in embargo or testing

	Show a device status page showing all the versions in all remotes

This release fixes the following bugs:

	Add missing support for LVFS::UpdateImage and Verfmt('number')

	Add some documentation on adding screenshots and using the LVFS offline

	Allow adding and removing component GUIDs on the web UI

	Allow a <project_license> of BSD

	Allow changing firmware licenses without re-uploading firmware

	Allow non-admin users to resign firmware

	Allow QA users to change the component name, ID and summary

	Allow searching by filename, requirement or CVE when logged in

	Allow supplying a generic ‘overview’ component for composite devices

	Allow vendors to specify client requirements

	Change the dropped-GUID from an upload flash() to a waivable test

	Check for more sneaky CVEs in update descriptions

	De-duplicate the requirements where appropriate

	Do not allow the vendor name “BIOS”, “fwupd” or “LVFS” in the firmware <name>

	Do not do the GUID check against firmware uploaded to private

	Do not ever store the client hashed IP address in the database

	Do not use send_from_directory() to send large files

	Fix all CSRF issues after some security review

	Fix performance issue when getting recent firmware downloads

	Include the copyright information for MIT licenses

	Increase the upload timeout to 10 minutes

	Move the disable 2FA slider to a button

	Parse the AMI FPAT firmware prior to scanning with UEFIExtract

	Provide a nudge when editing a component if required values are unset

	Purge firmware that is deleted after just 30 days

	Record the client country code for analytics

	Reduce the number of buttons on the component overview

	Regenerate embargo remotes when modifying restrictions

	Run any pending tests every 60 minutes

	Update the bundled version of Chart.js

	Update the README.txt file during package signing

	Use a non-predictable vendor icon filename

	Use PyGnuTLS rather than using certtool when signing files

	Use python-cabarchive rather than GCab for parsing

	Use the CDN to serve public static files

	Write the PULP_MANIFEST with a predicatable order

1.2.0 (2020-06-09)

This release adds the following features:

	Add a filter view for user uploaded firmware

	Add a plugin to identify old microcode versions

	Add cached public stats of useful metrics

	Add support for LVFS::UpdateMessage

	Allow clients to upload anonymous HSI attrs

	Allow re-signing binaries

	Create Jcat files in archives and for metadata

	Delete firmware in embargo with newer public versions

	Disable unused user accounts for GDPR compliance

	Export the success confidence to the mdsync vendor

	Include LVFS::UpdateProtocol in the metadata

	Rewrite the AppStream screenshot URL to use the server CDN

	Rewrite the metainfo when signing the firmware

	Save metadata about Intel microcode blobs

	Support Lenovo, Dell and Intel specific security tags

	Use celery to process async operations

This release fixes the following bugs:

	Allow all users to view the profile page

	Allow a protocol to have no defined version format

	Allow QA users to see all ODM firmware uploaded

	Allow setting the category to ‘Unknown’

	Allow specifying firmware versions when using the advanced requires editor

	Do not allow component modification when in testing and stable

	Do not backtrace if a component does not have a <name>

	Do not include a CSRF for public search queries

	Do not include the VersionFormat fallbacks if the fw requires a new enough fwupd

	Do not make the database server explode with a query like ‘value=+foo’

	Do not save duplicate <requires>vendor-id</> tags to the metadata

	Ensure firmware again when it changes state

	Fix a regression when component claims were not being added

	Fix regression when getting security level of component

	Improve the report query speed by several orders of magnitude

	Include the vendor tag in the rewritten metainfo and AppStream XML

	Invalidate ODM remotes when a firmware is demoted back to private

	List <id> requires first in the metadata

	Make it more obvious that the firmware is waiting to be signed

	Make the LVFS username case insensitive

	Make the markdown to root function more robust

	Parse the <metadata_license> even when not in strict mode

	Set the SHA256 content checksum in the metadata

	Show a disabled button when the user has no ACL to move the firmware

1.1.6 (2020-01-28)

This release adds the following features:

	Add a atom feed to public device page

	Add a claim for systems supporting Intel BiosGuard and BootGuard

	Add a dell-bios version format

	Add a page to list consultants that can work on the LVFS

	Add a plugin to add component claims for specific shard GUIDs

	Add a release tag to store the vendor-specific firmware identifier

	Allow adding component claims based on the hash of a shard

	Allow syncing with other firmware databases

	Move the formal documentation to Sphinx

This release fixes the following bugs:

	Add many more database indexes to improve performance

	Add some missing vendor checks when proxying to the user ACL

	Allow vendor managers to see a read-only view of the restrictions page

	Always use the vendor-id restrictions of the ODM, not the OEM

	Fix support for multiple LVFS::VersionFormat tags

	Include a vendor ID by default for testing accounts

	Make more queries compatible with PostgreSQL

	Never include firmware in private in any embargo remote

	Only show vendors with LVFS users on the vendorlist

	Reduce the memory consumption when running cron and doing yara queries

	Update the firmware report count at upload time

	Use SHA256 when storing the upload checksum

	Use the correct filename for a PKCS-7 payload signature

	Use UEFIExtract rather than chipsec to extract shards

1.1.5 (2019-11-15)

This release adds the following features:

	Add support for matching firmware requirements on device parents

	Allow researchers to run YARA queries on the public firmware

	Allow the blocklist plugin to add persistent claims

	Use PSPTool to parse the AMD PSP section

This release fixes the following bugs:

	Add the Dell PFS as a component shard

	Allow the owner of the firmware to always change update details

	Convert to Blueprints to improve page loading time

	Do not hardcode the list of version formats in various places

	Do not share the shard name between GUIDs

	Only auto-demote stable-to-testing, not testing-to-embargo or stable-to-embargo

	Show the version format versions with no trailing zeros

1.1.4 (2019-09-26)

This release adds the following features:

	Add component issues such as CVEs in a structured way

	Add more OEM notification emails for ODM actions

	Add support for name variant suffixes

	Add vendor namespaces to enforce ODM relationships

	Allow searching for CVEs when logged in

	Allow the OEM to better control what the ODM is able to do

This release fixes the following bugs:

	Allow vendors to optionally disable the inf parsing

	Blacklist generic GUIDs like ‘main-system-firmware’

	Check the source and release URLs are valid if provided

	Do not show deleted firmware on the recent list on the dashboard

	Don’t auto-demote firmware because of old reports

	Enforce the VersionFormat if the version is an integer

	Fix a crash if uploading a file with a missing metadata_license tag

	Provide a way to un-disable users as a vendor manager

	Regenerate embargo remotes ever 5 minutes

	Use a sane error message on upload when a component drops a GUID

1.1.3 (2019-08-06)

This release adds the following features:

	Show a nag message for admin or manager account without 2FA

	Do not use AppStream-glib to parse the metainfo file

	Automatically demote firmware with more than 5 failures and a success rate of %lt;70%

	Allow firmware or vendors to enable DoNotTrack functionality

	Show the user capabilities in the headerbar

	Protect all forms against CSRF

This release fixes the following bugs:

	Retry all existing tests if the category or protocol is changed

	Do not allow forward slashes in AppStream ID values

	Use a proper AppStream ID for the CHIPSEC shards

	Show flashed messages on the landing page

	Better support firmware requires without conditions or versions

	Do not allow AppStream markup in non description elements

1.1.2 (2019-05-28)

This release adds the following features:

	Add a new plugin to check portable executable files

	Save the shards in an on-disk cache which allows re-running tests

	Add a failure for any firmware that is signed with a 3-year expired certificate

	Add shard certificates to the database and show them in the component view

This release fixes the following bugs:

	Make it easier to enter multiline text as plugin settings

1.1.1 (2019-05-21)

This release adds the following features:

	Allow managers to edit their own list of embargoed countries

	Record the size and entropy of the component shards when parsing

	Analyze Intel ME firmware when it is uploaded

This release fixes the following bugs:

	Do not expect device checksums for ME or EC firmware

1.1.0 (2019-05-14)

This release adds the following features:

	Run CHIPSEC on all UEFI firmware files

	Show details of UEFI firmware volumes for capsule updates

	Show differences between public revisions of firmware

	Provide some extra information about detected firmware shards

This release fixes the following bugs:

	Only decompress the firmware once when running tests

	Make the component detail page a bit less monolithic

	Never leave tests in the running state if a plugin crashes

1.0.0 (2019-05-02)

This release adds the following features:

	Allow the admin to change the AppStream ID or name of components

This release fixes the following bugs:

	Do not allow the telemetry card title to overflow

	Ensure the firmware-flashed value is a valid lowercase GUID

	Make the component requirements page easier to use

	Do not add duplicate <hardware> values

	Remove the hard-to-use breadcrumb and use a single back button

Firmware Embedded SBoM Specification

Version: 0.9 (DRAFT)

Date: February 21, 2024

Acknowledgements

Authors:

	Richard Hughes (Red Hat)

	Martin Fernandez (Eclypsium)

	Adam Williamson (Red Hat)

Many thanks should also go to the UEFI SBOM Sub Team for all thier support in the creation of this document.

This specification document may be subsumed by a future UEFI specification or best practice document, but was published here to provide a reference specification in the interim.

Preface

The purpose of this document is to present a set of guidelines and best practices for vendors of firmware to provide Software Bill of Materials (SBoM) information to their clients and customers, to aid in vulnerability detection and license management.

Note: The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document should be interpreted as described in RFC 2119 [https://www.rfc-editor.org/rfc/rfc2119].

Glossary

This document assumes a working knowledge of terminology related to firmware, and of software concepts such as “libraries” and “compilers”.
The terms defined in this glossary may appear in italics as a reminder that they are being used as defined here.

Readers may be expecting to see terms like “IBV” (Independent BIOS Vendor), “ODM” (Original Design Manufacturer), “IFV” (Independent Firmware Vendor) and “OEM” (Original Equipment Manufacturer), but this document mostly avoids those terms.
This is because those entities may, at any given moment and in any given commercial arrangement, be acting as component vendors, firmware vendors or platform vendors in the context of this document.

	SBoM: Software Bill of Materials.
A formal document which can be used to articulate what components are contained within a binary deliverable, and who is responsible for each part.

	Component: any identifiable, discrete element of a firmware, including but not limited to any item that can be removed from, replaced in or added to a file volume or archive.
This includes, but is not limited to, PE files, PEIMs, CPU microcodes, CMSE/PSP, FSP/AGESA, EC and OptionROMs – but SHOULD NOT include encryption keys or source code references.
Each component may be provided as a precompiled binary by a component vendor to a firmware vendor, or it may be built from an independent source code tree by the firmware vendor.

	Component SBoM: an SBoM for a single component.

	Component Vendor: a party responsible for directly supplying a component for use by a firmware vendor in a firmware image.

	Firmware: a complete firmware image, which typically comprises multiple components.

	Firmware SBoM: an SBoM that represents all the components present in a single firmware and which could be generated in full or in part by combining component SBoMs.

	Firmware Vendor: a party responsible for building firmware, for use by the platform vendor.

	Platform SBoM: an SBoM that represents all the components in use on a real-world device.
This may be equivalent to the firmware SBoM for single system firmware deployed on a device, or be a superset that includes metadata for multiple firmware (e.g. separate firmware for the system and for an attached touchpad or camera device).

	Platform Vendor: the party responsible for supplying a combined platform firmware image, typically comprising multiple firmware, for use on end-user hardware.

	Source Code: Text written in a program language (for example, C, assembly or Rust) that is compiled into binary object files and is not included verbatim in the firmware image.

Introduction

Due to the increasing number of high-profile supply chain attacks, it has become more important to record information about critical software such as system and peripheral firmware.
For US companies, Executive Order 14028 [https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity] “Improving the Nation’s Cybersecurity” and the Cyber Trust Mark [https://www.fcc.gov/cybersecurity-certification-mark] now make providing an SBoM with this information a legal obligation for many companies.

It has traditionally been difficult to build firmware or platform SBoMs for systems due to the involvement of three separate entities: the Firmware Vendor that produces the bulk of the source code, the ODM (Original Design Manufacturer) that compiles it with other additional code and adds additional binaries, and the OEM (Original Equipment Manufacturer) that may add their own extensions and then distributes the firmware.
Most consumer laptop and desktop devices also have many other firmware blobs of firmware supplied for factory burn-in, e.g. fingerprint reader, SD card reader, touchpad, PCI retimer, Synaptics MST, Intel Thunderbolt, and many more – and these might not have any communication channel to the system firmware at all.

End-users do not buy “firmware” and any firmware deliverable will normally be included in a larger OEM per-device platform SBoM.
At the same time, we also need to provide access to the runtime “current firmware SBoM” so that we can use newer technologies such as VEX [https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Document_508c.pdf] to automatically identify systems that require security fixes.

This document explains why SBoM metadata for all constituent components should be embedded in all firmware, what should be included in it, and how it should be used as part of a larger platform SBoM that is useful to end-users.

Embedding the SBoM

When we talk about “embedding the SBoM”, we refer to the general idea of having SBoM metadata for all components in a given firmware included into the firmware image itself, either by providing a firmware SBoM or just by ensuring all components are represented in multiple component SBoMs.

Benefits of Embedding

Traditionally there has been pressure to keep firmware images as small as possible to minimize SPI storage space and to minimize the cost of the Hardware Bill of Materials.
While this is a noble aim, sacrificing a few hundred bytes of space for an embedded SBoM has several advantages:

	The SBoM does not need to be verified against a binary deliverable, it can be assumed to be “part of” the existing source artefact itself.

	Vendors at any link in the supply chain that don’t care about or understand SBoMs do not “strip” the SBoM information.

	The component SBoMs and/or firmware SBoMs from all the factory burn-in firmware images can be combined into one generated public platform SBoM that can be used for contractual or compliance reasons, without the need to request component or firmware SBoMs separately from each component vendor and firmware vendor.

	Build-time automated embedding as part of CI/CD is recommended as part of the US Cyber Trust Mark [https://www.osfc.io/2023/talks/us-cyber-trust-mark-is-your-firmware-ready/] initiative.

	Some firmware build systems require the firmware blob and definition files to be put in a predefined place to generate a new firmware binary, which means non-embedded SBoM metadata may get out-of-sync with the blob.

If the SBoM is not embedded as a build artifact, a firmware engineer could rebuild the firmware capsule and forget to also regenerate or replace the SBoM in the new archive because it is a separate process that is hard to verify was done.
If the SBoM is part of the image itself and automatically constructed as part of the deliverable, then it is impossible to forget.
Sending the capsule or manually dumped ROM image to a QA engineer means they can know with almost complete certainty what blobs the image was built with.
Embedding the SBoM makes doing the “right” thing easy and doing the “wrong” thing hard.

General Best Practices

All component vendors SHOULD embed an SBoM in the component image, formatted as described below.
They MAY also create a more detailed detached SBoM (for instance referencing internal issues or source code filenames) that MAY be provided to the firmware vendor under NDA.

Firmware vendors SHOULD ensure embedded SBoM metadata is included for every PE binary and all additional components included in the firmware formatted as described below.
This MUST be done by:

	Including the SBoM for each component in a “defragmented” firmware SBoM created at build time, OR

	Ensuring that each component contains embedded SBoM metadata, OR

	Doing both of the above.

Component and firmware SBoMs SHOULD NOT reference any code or blobs which are not actually present, or which have been disabled in the system.

Embedded SBoM Formats

Firmware and component vendors MUST use the DTMF coSWID [https://datatracker.ietf.org/doc/rfc9393/] binary format with CBOR encoding when directly embedding SBoM sections in firmware.
This format was chosen due to the small compiled size of data compared to SPDX [https://spdx.dev/use/specifications/] (YAML or JSON) and SWID [https://www.iso.org/standard/65666.html] (XML), because the specification is freely available and because it can act as a superset format to both SPDX and CycloneDX.

Built Portable Executable (PE) Binaries

Most components in a typical firmware are compiled from source code and linked into PE binaries.
These can be considered components whose vendor is the firmware vendor.

The firmware vendor SHOULD ensure that the SBoM metadata is automatically built and verified at compile time and then added to the PE binary (in the .sbom COFF section), placed directly in the “defragmented” firmware SBoM (see below), or both.
If for any reason this is not done automatically at compile time, the firmware vendor still MUST ensure the SBoM is included in the binary .sbom COFF section or the “defragmented” firmware SBoM, as required above.

For Tianocore/EDK2 firmware, there is an example [https://github.com/hughsie/uswid-uefi-example] showing how to supplement the information in the .inf file with per-component and per-platform overrides.
More specific recommendations on how to include additional artifacts into the .sbom section have not been made as this will be heavily influenced by the existing proprietary build system and tools used to build the image.

In the case where there is no natural place to store the component SBoM, it SHOULD be included as a per-volume metadata section. In this case it MUST include a uSWID magic header, as described in Components that are not Portable Executables (PE) below.

Precompiled Portable Executable (PE) Binaries

Firmware vendors do not have to compile all the PE binaries in the EFI volume from source code.
They may get pre-compiled and pre-signed binaries from third-party component vendors.
Component vendors SHOULD include the coSWID SBoM metadata for these components in a .sbom COFF [https://learn.microsoft.com/en-us/windows/win32/debug/pe-format] section which can be easily included at link time.
These binaries MUST NOT use the magic header of uSWID (described below) as the PE header can be parsed for the correct offset of the section.

An additional benefit of including the SBoM in a COFF section is that it is verified by the existing Authenticode digital signature [https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode].

If a firmware vendor uses a PE binary which does not have this embedded SBoM metadata, the firmware vendor MUST ensure SBoM metadata for the binary is present in a “defragmented” firmware SBoM, as described below.

Components that are not Portable Executables (PE)

When embedding SBoM metadata into any binary that is not a Portable Executable (PE), the component vendor MUST use the discoverable uSWID header [https://github.com/hughsie/python-uswid#coswid-with-uswid-header] so that software can easily discover the embedded SBoM.
The 25-byte uSWID header is listed below:

uint8_t[16] magic, "\x53\x42\x4F\x4D\xD6\xBA\x2E\xAC\xA3\xE6\x7A\x52\xAA\xEE\x3B\xAF"
uint8_t header version, typically 0x03
uint16_t little-endian header length, typically 0x19
uint32_t little-endian payload length
uint8_t flags
 0x00: no flags set
 0x01: compressed payload
uint8_t payload compression type
 0x00: none
 0x01: zlib
 0x02: lzma

The header length MAY be increased for alignment reasons (e.g. to 0x100 bytes), and in this case the additional header padding MUST be NUL bytes.

The uSWID payload SHOULD be compressed with either zlib or LZMA, and a firmware image containing the binary SHOULD pass validation [https://github.com/hughsie/python-uswid/pull/58] using uswid, for example:

$ uswid --load firmware.bin --validate
Found USWID header at offset: 0x18000
Validation problems:
dd4bbe2e40ba component: No software name (uSWID >= v0.4.7)
dd4bbe2e40ba entity: Invalid regid http://www.hughsie.com, should be DNS name hughsie.com (uSWID >= v0.4.7)
dd4bbe2e40ba entity: No entity marked as TagCreator (uSWID >= v0.4.7)
dd4bbe2e40ba payload: No SHA256 hash in FSPS (uSWID >= v0.4.7)
dd4bbe2e40ba link: Has no LICENSE (uSWID >= v0.4.7)
dd4bbe2e40ba link: Has no COMPILER (uSWID >= v0.4.7)

Although there are many tools for the distribution of the firmware SBoM to end-users, fewer tools exist to embed SBoMs into binary blobs, or to extract and merge SBoM components to build a firmware SBoM or platform SBoM. The python-uswid [https://github.com/hughsie/python-uswid] project is one such tool.

Defragmented firmware SBoM

A firmware image can contain a “defragmented” top-level firmware SBoM with a uSWID header, produced at build time. If each component in the image has uSWID metadata, coSWID data in PE/COFF .sbom sections and/or file volumes with uSWID metadata, the firmware vendor MAY omit this firmware SBoM. If not, the firmware vendor MUST include it.

If the firmware SBoM is present:

	It MUST contain all component SBoMs present in the image.
This requirement is to ensure that tools do not need to combine and deduplicate component SBoMs with the firmware SBoM to provide all available information.

	It SHOULD be compressed.

	The components MAY also have component SBoMs as described in this document, to allow them to be analyzed in isolation.

Data Provided by the SBoM

The purpose of an SBoM is to tell the end-user what components make up the software deliverable, and to give them information on where it was retrieved from or built. The questions end-users need to be able to answer are “what version of OpenSSL is included, and where did it come from” and “do I trust all the companies contributing code and binaries to this image”. Answering the what and who in a standardized way also allows us to use other specifications such as VEX.

In this section we use the term “SBoM component” to refer to a single ingredient within an SBoM (in a coSWID SBoM, this is a single tag).

Each SBoM component SHOULD describe either:

	A single component, as defined in the glossary, or

	An individually identifiable part of a component that has security and/or licensing implications, for example an image loading library used by a PE binary, or

	Something that has security and/or licensing implications and was used to produce a component, but is not present in the component itself, for example a compiler used to produce a PE binary, or

	Any kind of defined logical component, for example “optional features” or “value add” options that may be matched from a VEX file (see below).

Each component MUST be represented by an SBoM component in its component SBoM, or the firmware SBoM if the component does not have its own SBoM (see the Embedding the SBoM section above for possible scenarios).
Libraries, compilers etc. SHOULD be represented by SBoM components (see the Component Relationships section below for more on this).
Thus, a component SBoM or firmware SBoM MUST contain at least one tag, and MAY contain more.

For components or relationships that cannot currently be disclosed for legal reasons, vendors MAY use the literal text REDACTED in place of the correct string value.
This is intended as a temporary measure while contracts or NDAs are renegotiated.
Any SBoM components with REDACTED text MAY be marked as incomplete and MUST fail validation.

Required Attributes

Each tag:

	MUST have an identifier in the form of a GUID.
See the Identifier section below for more details.

	MUST have a non-zero length descriptive name, e.g. “CryptoDxe”, and SHOULD NOT include a file extension as this is already included in the SWID payload section.

	
	MUST have at least one entity entry and SHOULD have more than one, if more than one legal entity is involved in its creation, maintenance and/or distribution.
	
	One entity MUST have the tag-creator role.

	One entity MUST have the software-creator role, and it MAY be the same entity as the one specified in tag-creator.
See the Vendor Entity section below for details.

	In specifying entity roles, vendors SHOULD be careful not to make business relationships public that are not already in the public domain.

	MUST have a version, which SHOULD be a semantic version like 1.2.3.

	
	MUST have a file hash that is generated from all the source files, if it is a binary built from source code or other constituent parts. This MUST be either a SHA-1 or SHA-256 hash.
	
	This is what uSWID calls a “colloquial version.”

	
	SHOULD have a revision control tree hash which MUST be either a SHA-1 or SHA-256 hash (e.g. the output from git describe), if it is a binary built from source code under revision control.
	
	This is what uSWID calls an “edition.”

	MAY or MUST include one or more link entries expressing relationship(s) to another SBoM component. See the Component Relationships section below for details, including when link entries are REQUIRED and when they are OPTIONAL.

The file hash SHOULD include the hashes of the source code files used to construct the binary, such as .c and .h files.
Any library statically-linked with the PE binary SHOULD be included as an additional SBoM component.

Identifier

In some cases, the most obvious identifier to use for the SBoM component is already in a GUID form – for instance using the UEFI GUID defined in an official specification or reference implementation.
In other cases, like GCC (where there is no GUID defined), vendors MUST use a swid: prefix to generate a GUID that is linked within the object.
Using a GUID is deliberate because it can obscure internal references, and can be encoded as a 128-bit number in coSWID.

Example component IDs could include:

	swid:intel-microcode-706E5-80

	swid:gcc

	f43cae5a-baea-5023-bc90-3a83cd4785cc which is UUID(DNS, “gcc”)

Some of this information is already present in projects such as EDK2 in the various .inf files.

Firmware vendors and component vendors SHOULD consult with any upstream projects before deciding identifier GUIDs.

Forked components modified by the firmware vendor MUST have an identifier different from the upstream component identifier.

The identifier GUID:

	SHOULD NOT include the component version, file or tree hash or revision.

	MAY allow comparing some components against SBoMs from different vendors.

Vendor Entity

An “entity” describes a party responsible for the creation, maintenance, and/or distribution of a firmware or component.
An entity can perform one or more roles (e.g. creator, maintainer and distributor), and multiple entities (even with the same role) can be defined for each component.

For instance, Intel FSP is created by Intel, maintained by Intel, and distributed by Intel.
A modified DXE might originally be created by Intel in EDK2, but then be modified and maintained by AMI and distributed by Lenovo.
In this case, the component for the FSP would have only one entity entry, but the component for the DXE would have three entity entries.

For each entity entry:

	The name MUST be the legal or common-use name of the open-source project, the component vendor, the firmware vendor, or the platform vendor.

	The registration ID MUST be the DNS name of the named legal entity, or the DNS name of the upstream project URL in the case of open-source projects.

Component Relationships

SBoM component links are used to supply additional information about how components relate to each other.
They also include any required licensing information, statically linked libraries and links to additional resources.
Libraries that may be matched from a VEX file (for instance, where a third-party library has previously security vulnerabilities) SHOULD be included as a component, but other internal libraries MAY be omitted.
SBoM components MAY use multiple links, even of the same relationship type.

	
	SBoM components representing open-source software MUST include one or more license link(s) indicating all licenses that apply.
	
	The URL for each license link MUST be the SPDX license URL, e.g.: https://spdx.org/licenses/LGPL-2.1-or-later.html

	The license relationship type MUST be used.

	All open-source code SHOULD be identified with its own SBoM component to allow verification of license compliance.

	
	SBoM components representing non-open-source software SHOULD include one or more license link(s) indicating all licenses that apply.
	
	The URL for each license link MUST be a public webpage with the full text of the proprietary license.

	The license relationship type MUST be used.

	
	SBoM components representing compiled binaries SHOULD reference SBoM components representing the compiler and linker used to build the binary where possible.
	
	The see-also relationship type MUST be used, and the swid-prefixed URL MUST be an existing component identifier defined in the component or firmware SBoM.

	
	SBoM components representing compiled binaries SHOULD reference SBoM components representing libraries that are linked into the binary and that may be referenced in VEX documents (see below).
	
	The requires relationship type MUST be used, and the swid-prefixed URL MUST point to an existing component in the SBoM.

	
	SBoM components MAY include a link specifying the source URL where they can be downloaded. e.g. https://github.com/intel/FSP/AmberLakeFspBinPkg
	
	The installationmedia relationship type MUST be used.

SBoM Information Flow

The figure below shows the possible flows of SBoM information from the component vendor(s), firmware vendor(s) and/or platform vendor to the end-user.
VEX data (see below) is used to notify the end user about security issues of components referenced by the SBoM.

[image: _images/sbom-flow.png]
Depending on existing business relationships, the firmware vendor (the ODM) may take on some of the responsibilities of the platform vendor (the OEM) or the component vendor (the IBV).

Dumping the SPI contents using an external SPI programmer or OS interface allows the end-user to extract a “current” firmware SBoM.
This allows analyzing the image without having access to a public SBoM provided by the platform vendor or a vendor neutral firmware provider like the Linux Vendor Firmware Service [https://fwupd.org/] (“LVFS”).

To comply with Executive Order 14028, OEM vendors SHOULD also publish either the SPDX or CycloneDX SBoM export as a downloadable file on the public device webpage.
The SHA-256 checksum of the generated SBoM SHOULD be used as the unique collection ID for the component and firmware SBoMs.
This enables the SBoM to be found using a search engine even if the original OEM has been renamed or the device HTML URI has been modified.

Using VEX Rules

Vulnerability Exploitability eXchange (VEX) allows a component vendor to assert the status of a specific vulnerability in a particular firmware.
VEX can have any of the following “status” values for each component:

	Not affected: No remediation is required regarding this vulnerability.

	Affected: Actions are recommended to remediate or address this vulnerability.

	Fixed: Represents that these product versions contain a fix for the vulnerability.

	Under Investigation: It is not yet known whether these product versions are affected by the vulnerability.

Only the entity with the source code tree and the config files used to build it (usually the IBV or ODM) has all the information required to know whether a given EFI binary is affected by a specific vulnerability.

If our aim is to find out if a specific firmware is vulnerable to a specific security issue, there are only three ways to solve this without access to a complete SBoM:

	The end-user asks the component vendor, who finds the firmware version, checks out the source code for that revision, then looks for affected code, and replies with the answer.

	The component vendor proactively passes detailed vulnerability status and remediation info to the immediate downstream supply chain partner, who then in turn proactively passes this down to each customer.

	The component vendor shares the code and the config to the customer and assumes the customer can work it out themselves.

We consider these ways to be clearly unsatisfactory.
Therefore, both component vendors and platform vendors SHOULD upload the SBoM to a trusted neutral entity, allowing multiple customers and end-users to query the information.
The neutral entity MAY also process additional trusted VEX data directly from component vendors, which allows firmware to automatically be marked as affected or not affected without direct involvement of the firmware vendor.

Vendors writing VEX rules MUST use the same identifier as used in the SBoM.
VEX product IDs are specified using PURL [https://en.wikipedia.org/wiki/Persistent_uniform_resource_locator], and the GUID MUST be used as the component name.
Where a semantic version is required it MAY also be specified.

For example:

	pkg:dca533ab-2c1f-4327-9b2b-09ac19533404

	pkg:dca533ab-2c1f-4327-9b2b-09ac19533404@15.35.2039

Further details about using Vulnerability Exploitability eXchange (VEX) standards such as OpenVEX with embedded firmware SBoMs will be provided in the future.

Final Comments

With these sets of recommendations we feel sure that the resulting firmware SBoM will be useful to security teams and end-users alike.
This would greatly benefit the entire firmware ecosystem and make the global supply chain measurably safer.

Appendix

External SBoM Metadata

This document strongly encourages vendors to embed the SBoM metadata into the respective binaries, but there are two situations where externally referenced SBoM metadata would be allowed:

	Where the binary is loaded onto critically space-constrained devices, for example microcode that is loaded into the processor itself.

	Where only later newer versions of the component have embedded SBoM metadata, and backwards compatibility is required with older revisions.

In these cases, the component vendor MUST provide “detached metadata” from the same source (or in the same archive file) as is used to distribute the immutable blob.

As the SBoM metadata is detached, vendors MUST ensure that the files do not get “out of sync” and are updated at the same time in the firmware source tree.
Detached metadata MUST always contain the SHA256 hash value of the binary [https://github.com/hughsie/python-uswid/#use-cases] as evidence to allow validation and MAY be signed using a detached signature if the archive is not already signed.
The public key SHOULD be distributed on a keyserver or company website for verification.

Wasted Space Concerns

Some vendors have expressed concerns about “wasted” space from including the SBoM data in the binary image.
For source components such as CPU microcode, a single component and vendor entity would use an additional ~350 bytes (zlib compressed coSWID), compared to 48kB for the average EFI binary and 25kb for a typical vendor BGRT “splash” logo.

The uswid command can automatically generate [https://github.com/hughsie/python-uswid#generating-test-data] a complete “worst case” platform SBoM with 1,000 plausible components.
This SBoM requires an additional 140kB of SPI flash space (uncompressed coSWID), or 60kB when compressed with LZMA.
For reference, the average free space in an Intel Flash ROM BIOS partition is 5.26Mb, where “free space” is defined as a greater than 100KiB stream of consecutive 0xFF’s after the first detected EFI file volume.
Adding the SBoM as embedded metadata would use 1.1% of the available free space.
Other firmware ecosystems such as Coreboot also now include SBoM generation [https://doc.coreboot.org/sbom/sbom.html] as part of the monolithic image.

Getting the Runtime SBoM

The ACPI SBOM ACPI table may be used in the future to return the coSWID formatted binary SBoM data from any device exporting an ACPI callable interface.
Further details will be provided when the SBOM table has been implemented.

If the platform allows direct access to the system SPI device, then the entire firmware image can be dumped to a local file and analyzed by tools such as uswid.

Converting the SBoM

The embedded SBoM SHOULD be converted it into one or more SBoM export formats before publication.

This can be achieved easily using tools such as uswid.
For example, this can be used to produce two JSON files in CycloneDX and SPDX formats from the platform image:

$ uswid --load rom.bin --save cyclonedx-bom.json
$ uswid --load rom.bin --save spdx.json

Signing the SBoM

The embedded SBoM MAY be signed, and MAY also be included in the firmware checksum.
If the firmware component is signed then the SBoM SHOULD be included in to the signature.
The signing step is optional because a malicious silicon provider can typically do much worse things (e.g. adding or replacing a DXE binary) than modify the SBoM metadata.

Using the LVFS

When firmware is uploaded to the LVFS it automatically extracts all available SBoM metadata and generates a HTML page [https://fwupd.org/lvfs/devices/component/64327/swid] with SPDX, SWID and CycloneDX download links that can be used for compliance purposes.
The LVFS MAY allow vendors to upload firmware or platform SBoMs without uploading the firmware binary.
Other services like Windows Update may offer this service in the future.

The VEX “trusted neutral entity” MAY also be the LVFS, even for firmware updates not distributed by the LVFS.
Uploading VEX data requires vendors to register for a LVFS vendor account [https://lvfs.readthedocs.io/en/latest/apply.html] which is available at no cost.

ChromeOS firmware testing

Prerequisites

	A Chrome OS device.

	A device to test that is supported by the installed version of fwupd in
Chrome OS, i.e. the device firmware update plugin is working.

Prepare Chrome OS for testing

Pre-conditions

	The Chrome-based device must be updated to the recent version of Chrome OS
(see official documentation:
https://chromium.googlesource.com/chromiumos/docs/+/main/developer_guide.md#Installing-Chromium-OS-on-your-Device
)

	WiFi connection with unrestricted access to LVFS site.

	For reference, we have used Samsung Galaxy Chromebook 2 (codename hatch).

Developer Mode

The Chrome-based device must be switched to development mode:
https://chromium.googlesource.com/chromiumos/docs/+/main/developer_mode.md#dev-mode

	Recovery mode : Hold Esc + Refresh [image: chromeos-refresh] and press Power.

	Enter Developer Mode :

	On screen “Please insert a recovery USB stick or SD card.” press “Ctrl+D”.

	By pressing “Enter” confirm turning OS verification OFF.

	The system will be restarted.

	After that step on every boot the OS will warn you about OS verification
disabled. Press “Ctrl+D” to proceed.

	The first boot after restart will set your device into Developer Mode, all
data on the device will be wiped out!

	During the first boot, set the network and log into the account.

	Go to Settings and check IP address assigned to your device:

[image: _images/chromeos-settings-network.png]

	The IP address will be used for remote access to the device over SSH – for
instance 192.168.1.115 it is assigned.

Disable rootfs verification

By default the filesystem is mounted in ReadOnly mode. For testing purposes we
have to do some changes in configuration, meaning we have to disable rootfs
verification.

	Switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + →” (‘→’
or ‘F2’ on top row).

	You should see the login prompt asking for login.

	Use username “chronos” for login, password is not needed.

	Run command to remove the FS verification:

sudo /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification

	Sometimes the command above fails and asks to provide additional
parameter “ –partitions ” with the partition ID.

Please check the output carefully:

[image: _images/chromeos-rootfs-1.png]

	For hatch the script is suggesting the 2-nd partition, so need
to retry the command with suggested parameter:

sudo /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification --partitions 2

[image: _images/chromeos-rootfs-2.png]

	Reboot the system with command:

sudo reboot

Allow fwupd access to HID devices for ChromeOS versions prior to v107

ChromeOS versions prior to version 107 have an issue with managing the HID devices
like mice or keyboard. In this case we need to avoid this restriction.

	Switch to linux console on ChromeBook by pressing: “Ctrl + Alt + →”

	You should see the login prompt asking for login.

	Use username “chronos” for login, no password should be asked.

	Run command to give access to HID and fwupd:

sudo usermod -a -G hidraw fwupd

	Restart the fwupd with the command:

sudo restart fwupd

Enable SSH access

It is recommended to enable SSH access allowing QA engineer remote connection to
the ChromeBook instead of typing all commands directly.

	Switch to linux console on ChromeBook by pressing: “Ctrl + Alt + →”

	You should see the login prompt asking for login.

	Use username “chronos” for login, no password should be asked.

	Run command to enable SSH access:

sudo /usr/libexec/debugd/helpers/dev_features_ssh

	Set password for the root user:

sudo passwd

password test0000 is recommended as default for ChromeOS devices under the
test.

	Reboot the system with command:

sudo reboot

	Now it is possible to use remote access with SSH tool to the Chromebook from
your Linux host using the password above:

$ ssh root@192.168.1.115
Password:
localhost ~ #

Pack a fresh firmware into the CAB format

The CAB file is the container containing the firmware file and XML file with the
metadata for LVFS and fwupd update daemon.

For the purpose of this documentation we will use the ColorHug open hardware
colorimeter.

Firmware files

ColorHug device uses the following firmware file:

firmware.bin

Metadata files

The metadata format is described in documentation:
https://lvfs.readthedocs.io/en/latest/metainfo.html

For composite devices, both LVFS and fwupd allow the use of a single CAB
file. In this case we have to prepare and pack several XML files with metadata,
one file for each firmware.

In the case of ColorHug, only one metadata file is requested:

firmware.metainfo.xml

The name of the files doesn’t matter – the only requirement is the extension .metainfo.xml.

Metainfo file for ColorHug

The metainfo firmware.metainfo.xml file for the device:

<?xml version="1.0" encoding="UTF-8"?>
<component type="firmware">
 <id>com.hughski.ColorHug.firmware</id>
 <name>ColorHug</name>
 <summary>Firmware for the Hughski ColorHug Colorimeter</summary>
 <description>
 <p>
 Updating the firmware on your ColorHug device improves performance and adds new features.
 </p>
 </description>
 <provides>
 <firmware type="flashed">40338ceb-b966-4eae-adae-9c32edfcc484</firmware>
 </provides>
 <url type="homepage">http://www.hughski.com/</url>
 <metadata_license>CC0-1.0</metadata_license>
 <project_license>GPL-2.0-or-later</project_license>
 <categories>
 <category>X-Device</category>
 </categories>
 <custom>
 <value key="LVFS::VersionFormat">triplet</value>
 <value key="LVFS::UpdateProtocol">com.hughski.colorhug</value>
 </custom>
 <releases>
 <release version="1.2.6.1" date="2016-12-02" urgency="low">
 <description>
 <p>This release fixes prevents the firmware returning an error when the remote SHA1 hash was never sent.</p>
 </description>
 <url type="source">https://github.com/hughski/colorhug1-firmware/releases/tag/1.2.6</url>
 </release>
 </releases>
</component>

Important tags explanation

Both metadata XML above contains the minimal amount of data. The most
interesting tags are:

	<id> – the name of AppStream unique identifier for the device.
Vendor must choose the unique string in reverse-DNS style and this ID must
contain the device name and .firmware suffix

	<name> – this is the short name of the device

	<name_variant_suffix> – for composite devices, this is added to short name

	<firmware> – the GUID in this tag is extremely important! It helps fwupd
to recognize the updatable device. See the output from fwupdmgr get-devices
for devices GUIDs.
It is allowed to use several GUIDs here if the same update file fits for several devices.

	<value key=”LVFS::UpdateProtocol”> – here should be used the name of
the protocol supported by the colorhug plugin (see
README.md [https://github.com/fwupd/fwupd/tree/main/plugins/colorhug] for
actual protocols supported).

	urgency=”low” – the urgency field has no effect on fwupd itself. This is
the hint for UI frontends how to notify users, Gnome Software center for
instance. At the moment Chrome OS has very limited UI support for device
updates. The upstream is expecting [https://lvfs.readthedocs.io/en/latest/metainfo.html#release-urgency-values]
following values:

	Value

	Meaning

	low

	Low importance

	medium

	Medium importance, e.g. optional
update

	high

	High importance, e.g. recommended
update

	critical

	Critical importance, e.g. urgent
or security issue

Generation of the CAB file

The generation of the CAB file is required for uploading to LVFS and for local
testing as well. The gcab tool is used for the generation under Linux:

$ gcab --create --nopath --verbose ColorHug-1.2.6.cab firmware.metainfo.xml firmware.bin

The ColorHug-1.2.6.cab will be created containing 2 files: 1 metadata XML
and 1 firmware binary.

The generated file will contain only the minimal amount of the metadata.
No additional information for firmwares validation, checksums or signatures are
included at this step!

Upload file to ChromeBook

To test the generated file you need to copy it onto a ChromeBook device.
The simplest method is to copy it via ssh from the build host.
Please substitute the IP address from the example below with the IP address of
your device, and use the password you’ve set during ChromeBook setup
(test0000 in the example):

$ scp ColorHug-1.2.6.cab root@192.168.1.115:~/
Password:

Alternatively you may want to use other methods for accessing the CAB file from
ChromeBook device, for instance: own HTTP server, network share, USB mass
storage and others.

Local test of the CAB file

Access to ChromeBook

Gain terminal access on ChromeBook via ssh (recommended) or with virtual
console.

SSH method

Use ssh tool from your host to login as root user to ChromeBook (use IP
address of your device and password you’ve set):

$ ssh root@192.168.1.115
Password:
localhost ~ #

Physical access method

	Switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + →” (‘→’
or ‘F2’ on top row).

	You should see the login prompt asking for login.

	Use username root for login, and password you’ve set (test0000 by
default):

localhost login: root
Password:
localhost ~ #

Virtual console via crosh

	Start crosh terminal by pressing “Ctrl + Alt + T” in GUI

	In the opened terminal window type shell command

	Switch to root account

crosh> shell
chronos@localhost / $ sudo bash
localhost / #

Check if the device is supported by fwupd

	Attach the device to ChromeBook

	Collect information about the attached device, supported by colorhug
plugin:

localhost ~ # fwupdmgr get-devices
Nightfury
│
├─ColorHug:
│ Device ID: d9c9e0eb29c6f35160d400949c14db42f473f4d4
│ Summary: An open source display colorimeter
│ Current version: 1.2.5
│ Vendor: Hughski Ltd. (USB:0x273F)
│ Install Duration: 8 seconds
│ GUIDs: 40338ceb-b966-4eae-adae-9c32edfcc484
│ afdcc391-6c33-5914-b4d2-b4dd71fe9c5a
│ 6bc5ff27-d631-5660-9991-6d24954c6f90 ← USB\VID_273F&PID_1001
│ 4841a9e4-e5c8-5107-a83e-d6c6d9c21248 ← USB\VID_273F&PID_1001&REV_0002
│ Device Flags: • Updatable
│ • Supported on remote server
│ • Device can recover flash failures
│ • Unsigned Payload

The most interesting here are device GUID(s) and device flags: Updatable
meaning that the device updates are supported by fwupd manager, and
Supported on remote server flag shows there are firmwares available on the
LVFS site.

Upgrade the device with development FW CAB file

As mentioned above, the development variant of locally generated CAB file was
not digitally signed, so it is not possible to install it on Chrome OS based
devices with the fwupdmgr tool due security reasons:

localhost ~ # fwupdmgr local-install --allow-reinstall --allow-older ColorHug-1.2.6.cab --json
firmware signature missing or not trusted; set OnlyTrusted=false in /etc/fwupd/daemon.conf ONLY if you are a firmware developer

To avoid that issue it is possible to use 2 methods:

	Modify /etc/fwupd/daemon.conf to allow untrusted firmwares, and restart
the daemon:

localhost ~ # restart fwupd

This method is suitable for developers only who are testing the new FW and
not recommended for other purposes .

Warning

This should never be done on production machines.

	Use standalone fwupdtool tool to update the device with development CAB
file:

localhost ~ # fwupdtool install --allow-reinstall --allow-older ColorHug-1.2.6.cab --json

Upgrade the device through internal repository

By default Chromium OS has a local vendors repository enabled (see
/etc/fwupd/remotes.d/vendor-directory.conf), so any CAB file placed into the
local directory /usr/share/fwupd/remotes.d/vendor/firmware will be automatically
detected and could be used for the device upgrade or downgrade:

localhost ~ # cp ColorHug-1.2.6.cab /usr/share/fwupd/remotes.d/vendor/firmware/

Note

Please check the Updates with LVFS section below how to update or downgrade
the firmware with the GUI or CLI.

LVFS

Chromium OS does not use the Linux Vendor Firmware Service [https://fwupd.org/] (LVFS) for secure updates directly.

Instead Google is using its own mirror copied from the LVFS stable remote.

That’s why we have to add LVFS remotes to the Chrome OS device during the
testing.

Account

Please request the access to LVFS portal according the
https://lvfs.readthedocs.io/en/latest/apply.html

LVFS: remotes

There are 4 LVFS
remotes [https://lvfs.readthedocs.io/en/latest/upload.html#remotes]
available for the CAB file uploading:

	private – should be the initial remote for uploading, the CAB file with
FW uploaded to private could be accessible only via direct link

	embargo – remote with non-public catalog of FWs available for Vendor
only; used during development and QA testing. The remote may be added to the
Chrome OS just like a common remote, so all fwupd functionality is
available for testing.

Should be used for testing by Vendor before giving access to FW to end-users.

	testing – this remote is generally available for end users, encouraged
enough to deal with the potential risk of the freshest FW version.

	stable – the main remote with released FW considered as good enough for
the mass market.

This remote is enabled by default on Chrome OS and Linux systems with
installed fwupd.

CAB file repacking

The uploaded CAB file would be repacked on the LVFS side:

	The metadata is validated during this step.

	Missing parts would be added into metadata if not provided by metadata XML
file, checksums for instance.

	The signature will be added to FW and metadata. Only signed CAB files are
trusted by default on end-user devices.

Any change of the metadata in the internal editor will cause repackage and
resignation of the CAB file, so the new file will be generated.

LVFS: private remote

Upload the FW CAB file to LVFS private remote

	Go to section “Firmware” -> “Upload new”

	Select the generated CAB file from your host

	Choose your vendor name (Collabora in example)

	Choose “Private” remote

	Press “Upload”

	The page will be refreshed

	Scroll down to the “Previous uploads” section, you should see the
confirmation with the date, filename and the status of uploaded file

	Refresh the web page until “Complete” status

	Press “Details” button

[image: _images/chromeos-lvfs-1.png]

[image: _images/chromeos-lvfs-2.png]

Install the FW CAB file from the private remote

The private remote doesn’t provide the catalog with uploaded files.
Instead you have to go to the CAB file you are interested in and get its
URL for the direct download and install.

	Choose the needed firmware from private repo (“Firmware” ->
“State::Private”) and press the button details.

[image: _images/chromeos-lvfs-3.png]

	In the “Details” tab you will see the “Overview” block with the name of the
uploaded firmware. The right click (or long press) will give you the URL of
the signed CAB file.

[image: _images/chromeos-lvfs-4.png]

	Gain access to the Chrome OS device terminal as described in the
Access to ChromeBook section.

	Via terminal install the CAB file from the LVFS by copied URL:

fwupdmgr install https://fwupd.org/downloads/c6fbb716abbb204d98f12edf1f146b6406f39b1eade741b353c15a86f5da8278-hughski-colorhug-1.2.6.cab
Waiting… [***************************************] Less than one minute remaining…
Successfully installed firmware

LVFS: Embargo remote

The embargoed remote provides the catalog of available firmwares but it is
restricted to vendor, so only the vendor is able to use it or share for 3-rd
parties.

Move the FW CAB file to embargoed remote

	Choose the needed firmware from private repo (“Firmware” ->
“State::Private”) and press the button details.

[image: _images/chromeos-lvfs-3.png]

	In the “Target” tab you will see the list of available remotes.

Press “Move here” button for “Embargo” remote:

[image: _images/chromeos-lvfs-5.png]

	On the updated screen you need to scroll down the web page to “History”
block to see the confirmation if the FW has been moved into the new remote:

[image: _images/chromeos-lvfs-6.png]

Enable the embargoed remote

This is the one-time action needed for enabling the Embargo remote on the
testing Chrome OS system.

	Check on Chrome OS device if the remote is not available and not
enabled already:

fwupdmgr get-remotes

If there is the remote named Embargoed for collabora or similar and it
is enabled (check the key Enabled: true), probably the remote is
configured already and you may proceed with Install the FW CAB file from the
embargo remote .

	On LVFS site find the section “Metadata” – it would contain links to the
recent versions of metadata for Embargo, Testing and Stable repositories.

However we are interesting in the configuration file for the Embargo remote
of your company (collabora-embargo.conf in the example)

[image: _images/chromeos-lvfs-7.png]

	Download the configuration file for the embargoed remote by clicking the
name.

Please keep in mind – this is the private file accessible for authorized
users only!

	You need to copy the downloaded file to the ChromeBook with any
method available for you (mass-media device, ssh and others).

To copy the file from the workstation with ssh, for instance:

scp collabora-embargo.conf root@192.168.1.115:~/

Please use the correct file name and IP address of the target device!

	On Chrome OS device you need to copy the file to configuration directory for
fwupd daemon:

cp -v collabora-embargo.conf /etc/fwupd/remotes.d/

	Restart the fwupd service on ChromeBook:

restart fwupd
fwupd start/running, process 22697

Install the FW CAB file from the embargo remote

	Refresh the metadata for embargoed remote:

fwupdmgr refresh
Updating collabora-embargo
Downloading… [***************************************]
Downloading… [***************************************]
Downloading… [***************************************]
Decompressing… [***************************************]
Successfully downloaded new metadata: 6 local devices supported

	Update with the FW available from Embargo remote:

fwupdmgr update
Devices with no available firmware updates:
• DUTA42
• Generic Billboard Device
╔══╗
║ Upgrade ColorHug from 1.2.5 to 1.2.6? ║
╠══╣
║ This release fixes prevents the firmware returning an error when the ║
║ remote SHA1 hash was never sent. ║
║ ║
║ ColorHug and all connected devices may not be usable while updating. ║
╚══╝
Perform operation? [Y|n]: Y
Downloading… [***************************************]
Downloading… [***************************************] Less than one minute remaining…
Downloading… [***************************************]
Decompressing… [***************************************]
Authenticating… [***************************************]
Waiting… [***************************************] Less than one minute remaining…
Successfully installed firmware

LVFS: Testing remote

The Testing remote provides the catalog of firmwares for public access, however
only users explicitly enabled this remote will have access to published FWs.

Move the FW CAB file to testing remote

LVFS side is similar to Move the FW CAB file to embargoed remote , but the
target is “Testing remote” and no need to download the file with remote
configuration.

Enable testing remote

This is the one-time action needed for enabling the Testing remote for the
Chrome OS system.

By default the Testing remote is already configured on Chrome OS but not
enabled.

	Check on Chrome OS device if the remote named Linux Vendor Firmware Service (testing)
is not enabled already:

fwupdmgr get-remotes

Check the key Enabled: and if it is set to true please proceed with
Install the FW CAB file with the testing remote

	To enable the testing remote, use text editor to edit configuration file to
replace Enabled=false by Enabled=true in
/etc/fwupd/remotes.d/lvfs-testing.conf or simply run the command below:

sed -i -e "s/^Enabled=false/Enabled=true/" /etc/fwupd/remotes.d/lvfs-testing.conf

	Restart the fwupd daemon:

restart fwupd
fwupd start/running, process 9841

Install the FW CAB file with the testing remote

	Refresh the metadata for testing remote:

fwupdmgr refresh
Updating lvfs-testing
Downloading… [***************************************]
Downloading… [***************************************]
Successfully downloaded new metadata: 2 local devices supported

	Update with the latest available FW from the testing remote:

fwupdmgr update
Devices with no available firmware updates:
• DUTA42
• Generic Billboard Device
╔══╗
║ Upgrade ColorHug from 1.2.5 to 1.2.6? ║
╠══╣
║ This release fixes prevents the firmware returning an error when the ║
║ remote SHA1 hash was never sent. ║
║ ║
║ ColorHug and all connected devices may not be usable while updating. ║
╚══╝
Perform operation? [Y|n]: Y
Downloading… [***************************************]
Downloading… [***************************************]
Authenticating… [***************************************]
Waiting… [***************************************] Less than one minute remaining…
Successfully installed firmware

LVFS: Stable remote

The Stable remote makes the FW available for all users of fwupd over the
World running on different operating systems (primarily Linux).

For the Chrome OS this repository isn’t enabled by default, so it is needed to
enable Stable remote explicitly. This makes the stable remote similar to the
testing one for the Chrome OS.

Google’s team is keeping its own mirror of LVFS, so the FW from the LVFS Stable
remote will be published for Chrome OS users only after some time.

Move the FW CAB file to stable remote

LVFS side is similar to Move the FW CAB file to embargoed remote, but the
target is “Stable remote” and no need to download the file with remote
configuration.

Enable stable remote

This is the one-time action needed for enabling the stable remote for the Chrome
OS system.

By default the stable remote is already configured on Chrome OS but not enabled.

	Check on Chrome OS device if the remote named Linux Vendor Firmware Service
is not enabled already:

fwupdmgr get-remotes

Check the key Enabled: and if it is set to true please proceed
with

	Enable the stable remote, use text editor to edit configuration file to
replace Enabled=false by Enabled=true in
/etc/fwupd/remotes.d/lvfs.conf or simply run the command below:

sed -i -e "s/^Enabled=false/Enabled=true/" /etc/fwupd/remotes.d/lvfs.conf

	Restart the fwupd daemon:

restart fwupd
fwupd start/running, process 20199

Install the FW CAB file with the stable remote

	Refresh the metadata for stable remote:

fwupdmgr refresh
Updating lvfs
Downloading… [***************************************]
Downloading… [***************************************]
Decompressing… [***************************************]
Successfully downloaded new metadata: 0 local devices supported

	Update with the latest available FW from the stable remote :

fwupdmgr update

Persistent revisions

Mark all FW versions uploaded to LVFS and used for automatic tests as persistent
(“preserve” button in LVFS).

This is needed to keep the uploaded versions used for tests and prevent from
purging on the LVFS side.

Signed Reports

The firmware testing is described in documentation:
https://lvfs.readthedocs.io/en/latest/testing.html#signed-reports
.

After each update the fwupdmgr client tools allow the end user to submit a
“report” which is used by the firmware owner to validate the firmware deployment
is correct. Any failures can be analyzed and patterns found and the metadata can
be fixed. For instance, the failures might indicate that the required fwupd
version needs to be raised to a higher value, or that the update requires a
specific bootloader version.

It is expected that only F/W having signed reports would be automatically copied
into the LVFS mirror for Chrome OS.
To do this, the user must either upload the certificate from each machine used
for testing, or hardcode a user token.

Uploading a signed report on ChromeOS is slightly different than on regular Linux
distributions as /etc is immutable and cannot be changed.
By creating a file /var/lib/fwupd/remotes.d/lvfs.conf in a mutable directory
the fwupd daemon will reload the information and disregard the immutable
/etc/fwupd/remotes.d/lvfs.conf contents.

[fwupd Remote]
Enabled=true
Title=Linux Vendor Firmware Service
MetadataURI=https://cdn.fwupd.org/downloads/firmware-EMBARGO_HASH.xml.xz
ReportURI=https://fwupd.org/lvfs/firmware/report
Username=THE_USERNAME
Password=THE_TOKEN

Where EMBARGO_HASH is the hash found in https://fwupd.org/lvfs/metadata/

The THE_USERNAME is your LVFS account email and THE_TOKEN is the token
generated in https://fwupd.org/lvfs/profile

To use a host certificate rather than hardcoding Username and Password:

	Go to the “Profile Settings”

	Upload the fwupd certificate

[image: _images/chromeos-lvfs-profile-settings.png]

[image: _images/chromeos-lvfs-client-certificates.png]

Warning

The metadata must now be downloaded from the embargo remote using
fwupdmgr refresh otherwise the message has no RemoteID will be
seen using fwupdmgr report-history --verbose

The user can then upload reports to the LVFS in a trusted way by signing the
report:

$ fwupdmgr update # or fwupdmgr install foo.cab
…reboot if required…

If using a Username and Password, you must use:

$ fwupdmgr report-history

If using a host certificate, you must use:

$ fwupdmgr report-history --sign

USB device update record

Since fwupd version 1.8.11 it is possible to record the firmware update of
the USB devices. This can be used for a failing update to allow the plugin
developer to replay the update for debugging purposes .

Device record

	Check the device availability and version

fwupdmgr get-devices

	Enable device emulation support, use text editor to edit configuration file
to replace AllowEmulation=false by AllowEmulation=true in
/etc/fwupd/daemon.conf or simply run the command below:

sed -i -e "s/^ AllowEmulation =false/ AllowEmulation =true/" /etc/fwupd/daemon.conf

	Restart the fwupd daemon:

restart fwupd
fwupd start/running, process 20199

	Copy the “Device ID:” or “GUID” value from the target device, for example:

├─ColorHug:
│ Device ID: 23cf6368c14a875f74c38a5a423518f38d8abbbc
│ Summary: An open source display colorimeter
│ Current version: 1.2.5
│ Vendor: Hughski Ltd. (USB:0x273F)
│ Install Duration: 8 seconds
│ GUIDs: 40338ceb-b966-4eae-adae-9c32edfcc484
│ afdcc391-6c33-5914-b4d2-b4dd71fe9c5a

The Device ID is unique per device!!!

	Register the device for recording using the “Device ID”:

fwupdmgr emulation-tag 23cf6368c14a875f74c38a5a423518f38d8abbbc

or the “GUID”:

fwupdmgr emulation-tag 40338ceb-b966-4eae-adae-9c32edfcc484

	Remove and re-insert the device.

	Upgrade the device to the newer version:

fwupdmgr update

	Save the records to an emulation file:

fwupdmgr emulation-save colorhug.zip

	Unregister the device:

fwupdmgr emulation-untag 23cf6368c14a875f74c38a5a423518f38d8abbbc

	Disable device emulation support, use text editor to edit configuration file
to replace AllowEmulation=true by AllowEmulation=false in
/etc/fwupd/daemon.conf or simply run the command below:

sed -i -e "s/^ AllowEmulation =true/ AllowEmulation =false/" /etc/fwupd/daemon.conf

	Restart the fwupd daemon:

restart fwupd
fwupd start/running, process 20199

The emulation file can now be sent to the plugin developer.

Device emulation

	Enable device emulation support, use text editor to edit configuration file
to replace AllowEmulation=false by AllowEmulation=true in
/etc/fwupd/daemon.conf or simply run the command below:

sed -i -e "s/^ AllowEmulation =false/ AllowEmulation =true/" /etc/fwupd/daemon.conf

	Restart the fwupd daemon:

 # restart fwupd
fwupd start/running, process 20199

	Load the emulated device:

fwupdmgr emulation-load colorhug.zip

	Check the device availability and version

localhost ~ # fwupdmgr get-devices
Nightfury
│
├─ColorHug:
│ Device ID: d9c9e0eb29c6f35160d400949c14db42f473f4d4
│ Summary: An open source display colorimeter
│ Current version: 1.2.5
│ Vendor: Hughski Ltd. (USB:0x273F)
│ Install Duration: 8 seconds
│ GUIDs: 40338ceb-b966-4eae-adae-9c32edfcc484
│ afdcc391-6c33-5914-b4d2-b4dd71fe9c5a
│ 6bc5ff27-d631-5660-9991-6d24954c6f90 ← USB\VID_273F&PID_1001
│ 4841a9e4-e5c8-5107-a83e-d6c6d9c21248 ← USB\VID_273F&PID_1001&REV_0002
│ Device Flags: • Updatable
│ • Supported on remote server
│ • Device can recover flash failures
│ • Unsigned Payload
│ • Emulated

	Upgrade the device to the newer version:

fwupdmgr update

	Disable device emulation support, use text editor to edit configuration file
to replace AllowEmulation=true by AllowEmulation=false in
/etc/fwupd/daemon.conf or simply run the command below:

sed -i -e "s/^ AllowEmulation =true/ AllowEmulation =false/"
/etc/fwupd/daemon.conf

	Restart the fwupd daemon:

restart fwupd
fwupd start/running, process 20199

Updates with LVFS

Update with GUI

	Go to “Settings”

	Press “About Chrome OS” and if the update is available – find the button
“Firmware updates” and press it:

[image: _images/chromeos-settings-fw-update.png]

	If the update for the connected device is available you will see it in the
list of pop-up window and will be able to update:

[image: _images/chromeos-settings-available-update.png]

	In case of successful update you should to see the appropriate message:

[image: _images/chromeos-settings-fw-uptodate.png]

	If something goes wrong during update, the error message should
appeared:

[image: _images/chromeos-settings-fw-error.png]

Update with console

Check the device availability and version

Run the command fwupdmgr get-devices to gain the list of attached devices.

fwupdmgr get-devices
Nightfury
│
├─ColorHug:
│ Device ID: 23cf6368c14a875f74c38a5a423518f38d8abbbc
│ Summary: An open source display colorimeter
│ Current version: 1.2.5
│ Vendor: Hughski Ltd. (USB:0x273F)
│ Install Duration: 8 seconds
│ Update State: Success
│ GUIDs: 40338ceb-b966-4eae-adae-9c32edfcc484
│ afdcc391-6c33-5914-b4d2-b4dd71fe9c5a
│ 6bc5ff27-d631-5660-9991-6d24954c6f90 ← USB\VID_273F&PID_1001
│ 4841a9e4-e5c8-5107-a83e-d6c6d9c21248 ← USB\VID_273F&PID_1001&REV_0002
│ Device Flags: • Updatable
│ • Supported on remote server
│ • Device can recover flash failures
│ • Unsigned Payload

Update the selected device

It is possible to update the single selected device by Device ID listed in
Check the device availability to
the last available FW version:

fwupdmgr update 23cf6368c14a875f74c38a5a423518f38d8abbbc
Devices with no available firmware updates:
• DUTA42
• Generic Billboard Device
╔═══╗
║ Upgrade ColorHug from 1.2.5 to 1.2.6? ║
╠═══╣
║ This release fixes prevents the firmware returning an error when the ║
║ remote SHA1 hash was never sent. ║
║ ║
║ ColorHug and all connected devices may not be usable while updating. ║
╚═══╝
Perform operation? [Y|n]:
Downloading… [***************************************]
Downloading… [***************************************]
Authenticating… [***************************************]
Waiting… [***************************************]
Successfully installed firmware

Update all supported devices

If you want to update all supported devices attached to the ChromeBook, just run
fwupdmgr update to apply any FW update available from the enabled remote:

fwupdmgr update
Devices with no available firmware updates:
• DUTA42
• Generic Billboard Device
╔═══╗
║ Upgrade ColorHug from 1.2.5 to 1.2.6? ║
╠═══╣
║ This release fixes prevents the firmware returning an error when the ║
║ remote SHA1 hash was never sent. ║
║ ║
║ ColorHug and all connected devices may not be usable while updating. ║
╚═══╝
Perform operation? [Y|n]: y
Downloading… [***************************************]
Downloading… [***************************************]
Decompressing… [***************************************]
Authenticating… [***************************************]
Waiting… [***************************************] Less than one minute remaining…
Successfully installed firmware

Downgrade the FW version

If several versions of the FW are available from enabled remote(s) it is
possible to perform downgrade to any available version lower than the current by
selection via the proposed menu. If only the single version for downgrade is
available you will need only to confirm the operation:

fwupdmgr downgrade 23cf6368c14a875f74c38a5a423518f38d8abbbc
0. Cancel
1. 1.2.5
2. 1.2.4
3. 1.2.3
4. 1.2.2
5. 1.2.0
Choose release [0-5]: 1
╔═══╗
║ Downgrade ColorHug from 1.2.6 to 1.2.5? ║
╠═══╣
║ This release fixes the firmware package to work with new versions of ║
║ fwupd. ║
║ ║
║ ColorHug and all connected devices may not be usable while updating. ║
╚═══╝
Perform operation? [Y|n]:
Downloading… [***************************************]
Downloading… [***************************************]
Downloading… [***************************************]
Authenticating… [***************************************]
Waiting… [***************************************]
Successfully installed firmware

Test cases

For tests in this section please use CAB files listed in section List of FWs
used in this doc or prepare own CAB
files and upload it to appropriate remote as described in LVFS section.

Variables for test cases

Most of the test cases are the same for all the HW, only CAB files and versions
are different. To unify the test cases for all devices, some variables are
defined and used in test cases for any device:

	OLDCAB – URL or path to the CAB file of the previous version

	NEWCAB – URL or path to the CAB file of the target version

For instance for ColorHug it is required to define URL to CAB files with
export command prior the test:

export OLDCAB=https://fwupd.org/downloads/9a4e77009da7d3b5f15a1388afeb9e5d41a5a8ae-hughski-colorhug2-1.2.5.cab

export NEWCAB=https://fwupd.org/downloads/c6fbb716abbb204d98f12edf1f146b6406f39b1eade741b353c15a86f5da8278-hughski-colorhug-1.2.6.cab

The example above sets the OLDCAB variable to the URL of the CAB file with FW
version 1.2.5, and the NEWCAB to the URL of the CAB file with FW version
1.2.6.

Test the FW from the private remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	2 FW CAB files uploaded to LVFS required (from the List of FWs used in this
doc)

	Export variables for test cases

	The target device connected to Chromebook (ColorHug in this example)

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Upgrade the device to the newer version:

fwupdmgr install ${NEWCAB}

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Test the FW from the embargoed remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable the embargoed remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Install the FW CAB file from the embargo remote

	Refresh the metadata for embargoed remote:

fwupdmgr refresh

	Expected result: last string must be

Successfully downloaded new metadata: 6 local devices supported

where the amount of supported devices might vary

	Update with the FW available from Embargo remote:

fwupdmgr update

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Test the FW from the testing remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable testing remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Install the FW CAB file with the testing remote

	Refresh the metadata for testing remote:

fwupdmgr refresh

	Expected result: last string must be

Successfully downloaded new metadata: 6 local devices supported

where the amount of supported devices might vary

	Update with the FW available from Testing remote:

fwupdmgr update

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Test the FW from the stable remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable stable remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Install the FW CAB file with the stable remote

	Refresh the metadata for stable remote:

fwupdmgr refresh

	Expected result: last string must be

Successfully downloaded new metadata: 6 local devices supported

where the amount of supported devices might vary.

	Update with the FW available from Stable remote:

fwupdmgr update

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Test GUI update with Google internal remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target FW must exist in Google internal remote

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Switch to the Chrome OS UI if you are in linux console:

switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + ←” (‘←’
or ‘F1’ on top row).

	After downgrading it is possible to update the device with GUI to the last available version :

go to “Settings” -> “About Chrome OS” -> “Firmware update”

Test GUI update with embargoed remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable the embargoed remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Refresh the metadata from the remote:

fwupdmgr refresh --force

	Switch to the Chrome OS UI if you are in linux console:

switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + ←” (‘←’
or ‘F1’ on top row).

	After downgrading it is possible to update the device with GUI to the last available version :

go to “Settings” -> “About Chrome OS” -> “Firmware update”

Test GUI update with testing remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable testing remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Refresh the metadata from the remote:

fwupdmgr refresh --force

	Switch to the Chrome OS UI if you are in linux console:

switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + ←” (‘←’
or ‘F1’ on top row).

	After downgrading it is possible to update the device with GUI to the last available version :

go to “Settings” -> “About Chrome OS” -> “Firmware update”

Test GUI update with stable remote

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Enable stable remote

	Export “OLDCAB” variable for test cases
(“NEWCAB” is not needed for this test)

	The target device connected to Chromebook

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to older release.

	Refresh the metadata from the remote:

fwupdmgr refresh --force

	Switch to the Chrome OS UI if you are in linux console:

switch to the linux console on ChromeBook by pressing: “Ctrl + Alt + ←” (‘←’
or ‘F1’ on top row).

	After downgrading it is possible to update the device with GUI to the last available version :

go to “Settings” -> “About Chrome OS” -> “Firmware update”

Recovery from the failed update with CLI

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	2 FW CAB files uploaded to LVFS required (from the List of FWs used in this
doc)

	Export variables for test cases

	The target device connected to Chromebook (ColorHug in this example)

Steps

	Check the device availability and version

fwupdmgr get-devices

	Downgrade the device to the older version (parameter --allow-older is
mandatory):

fwupdmgr install ${OLDCAB} --allow-older

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

	Copy the “Device ID:” value from the target device, for example:

├─ColorHug:
│ Device ID: 23cf6368c14a875f74c38a5a423518f38d8abbbc
│ Summary: An open source display colorimeter
│ Current version: 1.2.5

The Device ID is unique per device!!!

	Put the device into bootloader mode.

Please use the ID of the target device detected on the previous step!!!

fwupdtool detach 23cf6368c14a875f74c38a5a423518f38d8abbbc

	The device must notify it is in bootloader mode with blinking LED.

	Check the device availability and version

fwupdmgr get-devices

	Expected result: the device flag Is in bootloader mode must exists

├─ColorHug:
│ Device ID: 23cf6368c14a875f74c38a5a423518f38d8abbbc
│ Summary: An open source display colorimeter
│ Current version: 1.2.5
│ Vendor: Hughski Ltd. (USB:0x273F)
│ Install Duration: 8 seconds
│ GUIDs: 40338ceb-b966-4eae-adae-9c32edfcc484
│ afdcc391-6c33-5914-b4d2-b4dd71fe9c5a
│ 6bc5ff27-d631-5660-9991-6d24954c6f90 ← USB\VID_273F&PID_1001
│ 4841a9e4-e5c8-5107-a83e-d6c6d9c21248 ← USB\VID_273F&PID_1001&REV_0002
│ Device Flags: • Updatable
│ • Supported on remote server
│ • Device can recover flash failures
│ • Is in bootloader mode
│ • Unsigned Payload

	Upgrade the device to the newer version:

fwupdmgr install ${NEWCAB}

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Test the FW reinstall

Preconditions

	Prepare Chrome OS for testing

	Enable access to ChromeBook

	Export “NEWCAB” variable for test cases
(“OLDCAB” is not needed for this test)

	The target device connected to Chromebook (ColorHug in this example)

7.11.2. Steps

	Check the device availability and version

fwupdmgr get-devices

	Update the device to the target CAB:

fwupdmgr install ${NEWCAB}

	Expected result: last string must be either

Successfully installed firmware…

OR

All updatable firmware is already installed

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

	Re-install the FW for all subdevices with the target release:

fwupdmgr install ${NEWCAB} --allow-reinstall

	Expected result: last string must be

Successfully installed firmware

	Check the device availability and version

fwupdmgr get-devices

Version of the FW must be equal to the target release.

Appendix A: List of FWs used in this doc

This is the list of FWs uploaded to LVFS and available for downloading and
testing.

ColorHug

	1.2.5

https://fwupd.org/downloads/9a4e77009da7d3b5f15a1388afeb9e5d41a5a8ae-hughski-colorhug2-1.2.5.cab

	1.2.6

https://fwupd.org/downloads/c6fbb716abbb204d98f12edf1f146b6406f39b1eade741b353c15a86f5da8278-hughski-colorhug-1.2.6.cab

export OLDCAB=https://fwupd.org/downloads/9a4e77009da7d3b5f15a1388afeb9e5d41a5a8ae-hughski-colorhug2-1.2.5.cab

export NEWCAB=https://fwupd.org/downloads/c6fbb716abbb204d98f12edf1f146b6406f39b1eade741b353c15a86f5da8278-hughski-colorhug-1.2.6.cab

How to run fwupd tests with Moblab

This howto shows how to run the fwupd test suites on Moblab to verify the
firmware updatability of peripherals in ChromeOS.

Overview

fwupd [https://github.com/fwupd/fwupd] is a system daemon that allows an OS
to update the firmware of a wide array of peripherals. ChromeOS relies on it to
perform the firmware updates of compatible and updatable devices.

Moblab [https://www.chromium.org/chromium-os/testing/moblab/] contains a set
of fwupd test suites to test the basic firmware-related operations that fwupd
can perform on a device. The purpose of these tests is, primarily, to validate
the correct firmware updatability of new peripherals so that they comply with
the WWCB Certification [https://docs.google.com/presentation/d/17liB2CCd3gA_BOdlKiFAWNIZn5qu0N27oyUlzJvAw1k/edit#slide=id.g11022a078fa_10_1631]
and to check the consistency and correctness of these operations across
different ChromeOS versions and firmware releases.

Before you begin

To run the fwupd tests you’ll need a working Moblab setup with at least one
DUT (a Chromebook or Chromebox) running a ChromeOS test image.

How to get a Partner Domain account

In order to have access to ChromeOS test releases you’ll need a Partner Domain
account. To ask for an account, send a request to cros-pd-owners@google.com.

Note

Besides the Partner Domain account, you should also get access to a
CPCon [https://chromeos.google.com/partner/console] account, a Service
account and a GCS bucket tied to the CPCon account.

How to ask for access to ChromeOS images for specific boards

Depending on the Chromebooks and Chromeboxes that you use for the tests, you’ll
need to have explicit access to the ChromeOS test images for each specific model
or board type so you can download them from the ChromeOS Partners Portal [https://www.google.com/chromeos/partner/fe/#release].

To request access, create an issue in the Partner Issue Tracker [https://partnerissuetracker.corp.google.com/issues/new?component=1038089&template=1569787]
using Component “ChromeOS Public Tracker > Services > Infra > Moblab”
(1038089) and template “Build Permission Access Request” and fill in the
template details.

How to get a Moblab

Reference: Moblab Instruction Manual [https://docs.google.com/document/d/e/2PACX-1vQKDTDTQFKjNxJatFkFUSjCPdVzgry9vkLLvxL8vwqasrKMP2KReEMZ3iva9GX8EzQYo-kANnzPlFG_/pub#h.tyjcwt]
section “II - Requirements”

Moblab is based on a Google Chromebox (Wukong or Wyvern). The distributor
of Moblab is CREATE TOGETHER TECHNOLOGY Co. Ltd. To inquire a quotation, reach
out to:

	Hans (hans@cttech-group.com)

	Kiki (kiki@cttech-group.com)

Please note, Moblab is not supported in mainland China, nor has it been certified by China CCC.

Required hardware

	One or more DUTs (Chromebook or Chromebox)

	Network equipment as described in section “II - Requirements” of the Moblab
Instruction Manual [https://docs.google.com/document/d/e/2PACX-1vQKDTDTQFKjNxJatFkFUSjCPdVzgry9vkLLvxL8vwqasrKMP2KReEMZ3iva9GX8EzQYo-kANnzPlFG_/pub#h.tyjcwt],
at least two Ethernet cables and a USB to Ethernet dongle. Follow the
instructions in section “II.2 - Now that I have all the required hardware, how
do I connect them?” in the Moblab Instruction Manual to setup the test lab

	A USB flash drive larger than 8GB

	An hdmi or displayport monitor, a keyboard and a mouse

	If the DUT is a Chromebox: an additional monitor, keyboard and mouse

Required software

Chrome Recovery Utility [https://chrome.google.com/webstore/detail/chromebook-recovery-utili/pocpnlppkickgojjlmhdmidojbmbodfm]
extension installed in Chrome.

Initial DUT (Chromebook) setup

Main references:

	Developer Mode [https://chromium.googlesource.com/chromiumos/docs/+/HEAD/developer_mode.md]

	Test Image & OS Recovery Setup Documentation [https://docs.google.com/document/d/e/2PACX-1vTOExuski5LDkJsk9cqcBGbDoyZJ-UR8zcwyes85Ia8qLi6id8uXEc9mRTYhiDS8LQb16LefM7d6LU1/pub]

In order to use a Chromebook or Chromebox for Moblab tests it needs to be
running a ChromeOS test release. Before continuing, make sure you have a partner
domain account with access to the ChromeOS Partners Portal [https://www.google.com/chromeos/partner/fe/#release]
and to the ChromeOS images for the specific Chromebook/Chromebox board types you
want to test.

Flash a ChromeOS test Image

First, start by flashing a ChromeOS test image into a USB flash drive:

	Go to the ChromeOS Partners Portal <https://www.google.com/chromeos/partner/fe/#release>
and log in with your partner domain account and click the “Image Files” tab.

[image: _images/moblab-partner-portal.png]

	Select the board of the Chromebook or Chromebox to test and
TEST_IMAGE_ARCHIVE in the “Image Type” drop-down menu, and click “Search” to
list all the ChromeOS test images for that board. You can refine the search
by entering a specific “Release/Milestone” and/or a specific “Version/prefix”.

	Download a recent test image (dev or stable channels recommended) and
decompress it with:

$ tar -Jxvf <release_file.tar.xz>

	Click the extension [image: extension-icon] button in Chrome, then select Chrome
Recovery Utility

[image: _images/moblab-recovery-utility-1.png]

	Select the gear icon [image: gear-icon] in the window. Next, click Use local
image.

[image: _images/moblab-recovery-utility-2.png]

	Select the chromium_test_image.bin file extracted in step 3

	Plug in the USB flash drive and select it as the media to use. Click
Continue and then Create now. Wait until the image is completely
written to the USB drive.

[image: _images/moblab-recovery-utility-3.png]

	Once complete, Select Done then unplug the USB flash drive

[image: _images/moblab-recovery-utility-4.png]

Install test image

Next, to install the image in the Chromebook or Chromebox, follow these steps:

	Put the device into Developer Mode [https://chromium.googlesource.com/chromiumos/docs/+/HEAD/developer_mode.md#dev-mode]
with the following procedure:

	For Chromebooks, Hold Esc + Refresh [image: refresh-icon] and press the
Power button. For Chromeboxes, engage the small Reset pinhole with
a paperclip, hit Power and continue engaging Reset for 2 seconds.
This will put the device into Recovery Mode and it should show a
screen similar to this:

[image: _images/moblab-install-test-img-1.jpg]

Or this, depending on the model:

[image: _images/moblab-install-test-img-2.png]

Note

On some Chromebooks the combination to hold is Esc + Full screen
[image: fullscreen-icon] instead.

	In the Recovery Mode screen, press Ctrl + D, followed by Enter to
enter Developer Mode

Note

For other devices without keyboards (such as tablets) follow
these instructions [https://chromium.googlesource.com/chromiumos/docs/+/HEAD/debug_buttons.md#firmware-menu-interface]
to enter Recovery Mode and Developer Mode

	Wait until the process is done and the Developer Mode warning screen appears

[image: _images/moblab-install-test-img-3.jpg]

	Once the device is in Developer Mode, it will show the warning screen above
every time it boots. It’ll start ChromeOS after 30 seconds or if you press
Ctrl + D. Start ChromeOS and wait for it to show the welcome screen

	Go to virtual terminal 2 to access a command line prompt by pressing:

[Ctrl] [Alt] [→]

where the [→] key is the right-arrow key just above the number 3 on the
keyboard. If the keyboard doesn’t have this key, use the key in the F2
position. Then log in with user: root

	Enable USB boot with the following commands:

$ sudo crossystem dev_boot_usb=1
$ sudo crossystem dev_boot_signed_only=0

	Now reboot and wait for the Developer Mode warning screen to appear, plug in
the USB flash drive and press Ctrl + U to boot the ChromeOS test image
from the USB drive.

Wait for ChromeOS to start

	Once ChromeOS is running, go to virtual terminal 2 again and log in with
user: root and password: test0000. Then install the test image in the
hard disk with the following command:

$ /usr/sbin/chromeos-install

and follow the instructions

[image: _images/moblab-install-test-img-4.png]

	Once installation has completed, reboot the device (shutdown -h now) and
remove the USB flash drive

Moblab setup

Follow the instructions in the Moblab Introduction & User Manual [https://docs.google.com/document/d/e/2PACX-1vQKDTDTQFKjNxJatFkFUSjCPdVzgry9vkLLvxL8vwqasrKMP2KReEMZ3iva9GX8EzQYo-kANnzPlFG_/pub]
to configure the Moblab, connect the DUT (Chromebook or Chromebox) to it and
enroll it. The end result must be something like this, where the “Manage DUTs”
tab shows an enrolled DUT with a “Ready” Status:

[image: _images/moblab-setup-1.png]

Other considerations and requirements

About the peripheral status

The peripherals to test must be in working order. If they are meant to be
updated wirelessly, they must have sufficient battery level to ensure the
firmware update process can be completed successfully. They must also be
supported by fwupd and they must have at least a firmware release included in
the ChromeOS-specific fwupd remotes, which are defined in the latest .ebuild
file in https://chromium.googlesource.com/chromiumos/overlays/chromiumos-overlay/+/refs/heads/main/sys-firmware/fwupd-peripherals/.

About the fwupd version and peripheral support

The fwupd version might be different from one ChromeOS version to another, so a
device that is supported by fwupd in a newer ChromeOS version might not be
supported in an older one.

About DUT provisioning in Moblab

Each Moblab test run will start by provisioning the DUT, that is, updating its
ChromeOS version to the one specified by the tester and checking that it can run
the tests properly. This has some side effects:

	The DUT will constantly check for an Ethernet link and will reboot
automatically if it doesn’t detect one after a few seconds.

	All Bluetooth device pairings will be wiped out

A DUT can be also provisioned on demand by selecting the DUT in the “Manage
DUTs” tab and clicking on the “Provision DUTs” button, then selecting the
milestone and build to use:

[image: _images/moblab-setup-2.png]

Test cases

Note

	The FWUPD tests are available only on ChromeOS R113-15382.0.0 and later.

	Tests of firmware updates/downgrades/installs over Bluetooth links are not
properly supported at the moment

The procedure to run the tests is the same for all the test cases except for the
parameters they take. To start a test, follow these steps:

	Make sure the DUT that will run the test is running, connected to the Moblab
network and that it shows up in the “Manage DUTs” tab in Moblab

	Enroll the DUT for tests by selecting it in the “Manage DUTs” tab and then
clicking “Enroll Selected”

	Make a note of the DUT IP address, as it’ll need to be specified later as one
of the test parameters

	Connect the peripheral to the DUT and power it on

	Go to the “Run Suite” tab and select “FWUPD” in the top menu

	Select the model and build target of the selected DUT, and then the ChromeOS
milestone and build to run the test on. Important: only ChromeOS
R113-15382.0.0 and later. The tests won’t be started for any version older
than that.

	Select the IP address of the DUT that will run the test

[image: _images/moblab-setup-3.png]

The rest of the steps depends on the test case to run:

Update a device firmware to the latest release

This test case will try to update a device firmware to the latest release
available in the fwupd remotes. To run it:

	Select the fwupd_update suite

	Select the device you want to test

	Click on “Run Suite”

[image: _images/moblab-setup-4.png]

Note

If there aren’t any new firmware releases available for the device, the
test won’t proceed and will be marked as an error.

Downgrade a device firmware to the previous release

This test case will try to downgrade a device firmware to the previous release
found in the fwupd remotes. To run it:

	Select the fwupd_downgrade suite

	Select the device you want to test

	Click on “Run Suite”

Note

If there aren’t any previous firmware releases available for the device,
the test won’t proceed and will be marked as an error.

Install a firmware version

This test allows the user to flash any available firmware release into a device,
regardless of the current version running on it. To run it:

	Select the fwupd_install_version suite

	Select the device you want to test

	Input the release version you want to install. Note that the version must be
specified in the format defined by the hardware vendor (as a number pair,
triplet, hexadecimal number, etc.). The Device info at the bottom shows
the Current FW version with the expected format.

	Click on “Run Suite”

[image: _images/moblab-setup-5.png]

Install a firmware file

This test allows the user to flash a specific firmware file into a device. The
file can be provided either as a URL if it’s in a remote server, or through an
external drive connected to the DUT.

	If the file is provided in an external drive, a USB flash drive is
recommended. Format it as FAT32 and set FWUPDTESTS as its label. Then copy the
firmware file to it and plug it to the DUT.

	If the file is provided as a URL, it must be accessible for the DUT to
download.

To run the test:

	Select the fwupd_install_file suite

	Select the device you want to test

	Enter the complete URL of the firmware file if it’s a remote file or the file
name if it’s a file provided through a USB flash drive

	Click on “Run Suite”

[image: _images/moblab-setup-6.png]

How to verify the test results

Once a test has started, it’ll show up in the “View Jobs” tab. You can enable
the “Auto Refresh” toggle switch to keep the job list updated as the job status
progress:

[image: _images/moblab-verify-1.png]

When the test finishes, its status will change to “COMPLETE”, the logs will be
stored locally and eventually uploaded to a Google Storage bucket. A cloud icon
in the “Logs” column means that the logs have been uploaded to Google Storage
and are no longer stored locally.

Note that for each test run there’ll be two entries in the jobs table: one
representing the test suite (control.fwupd_update in the image above) and
another representing the test proper (fwupd_FirmwareUpdate in the image).

Once the job has finished you can check the results. If the logs haven’t been
uploaded yet, you can check them directly by clicking on the “Logs” icon for the
test job (not the suite). From there, navigate to the “status.log” file:

[image: _images/moblab-verify-2.png]

[image: _images/moblab-verify-3.png]

The “status.log” file shows a summary of the test result:

INFO ---- ---- kernel=5.15.94-16358-gae97cc7d22a2 timestamp=1677059177 localtime=Feb 22 09:46:17
START ---- ---- timestamp=1677059182 localtime=Feb 22 09:46:22
START fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677059182 localtime=Feb 22 09:46:22
ERROR fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677059183 localtime=Feb 22 09:46:23 No FW releases found for 4a69bff2d096b361b6e8a070a012728aff92538e (Unifying Receiver)
END ERROR fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677059183 localtime=Feb 22 09:46:23
END GOOD ---- ---- timestamp=1677059183 localtime=Feb 22 09:46:23

In this case it shows that the FirmwareUpdate test failed because the selected
device doesn’t have any FW releases available.

This other case shows a successful run:

INFO ---- ---- kernel=5.15.94-16358-gae97cc7d22a2 timestamp=1677060168 localtime=Feb 22 10:02:48
START ---- ---- timestamp=1677060173 localtime=Feb 22 10:02:53
START fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677060173 localtime=Feb 22 10:02:53
GOOD fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677060174 localtime=Feb 22 10:02:54 completed successfully
END GOOD fwupd_FirmwareUpdate fwupd_FirmwareUpdate timestamp=1677060174 localtime=Feb 22 10:02:54
END GOOD ---- ---- timestamp=1677060174 localtime=Feb 22 10:02:54

When the logs are uploaded to Google Cloud Storage, you can check them through
CPCon [https://chromeos.google.com/partner/console], accessing with your
partner domain account and clicking on the “Autotest View” option. From there
you can see all the test suites run on every Chromebook type and ChromeOS
milestone:

[image: _images/moblab-verify-4.png]

Clicking on any of the test suite results will lead you to a detailed summary of
that suite. All the different test runs for that particular Chromebook type and
ChromeOS version will show up listed either as a “Non-Passed test” or as a
“Passing test”. The most recent test run will be the last log listed:

[image: _images/moblab-verify-5.png]

Clicking on any of the logs will direct you to the Google Storage bucket
directory containing the logs for that test run:

[image: _images/moblab-verify-6.png]

From there you can download the “status.log” file. The directory and file
structure is the same as in the locally stored logs.

How to get debug information

If the “status.log” report doesn’t give enough information about a failed
test, you can also download the “debug/client.0.DEBUG” file, which contains
the full log including debug messages. Additionally, the “sysinfo/messages”
file contains the full system log that can also be useful to investigate a bug.

For instance, this “install file” test failed with this message in the status.log file:

FAIL fwupd_FirmwareInstallFile fwupd_FirmwareInstallFile timestamp=1678199270
localtime=Mar 07 14:27:50 Command <CACHE_DIRECTORY='/var/cache/fwupd' fwupdmgr
local-install --json --allow-older --allow-reinstall
https://fwupd.org/downloads/b1f9760a573b19f7d6eca46cdc04389c89649c803943d5d5e1681fe60f
b83f61-EPOSADAPT1x5T.cab b1f4e48ebea67bc554a73407241469583497b8e6> failed, rc=1,
Command returned non-zero exit status

Which doesn’t tell the reason. Checking the “debug/client.0.DEBUG” file
shows the whole fwupdmgr output:

* Command:
 CACHE_DIRECTORY='/var/cache/fwupd' fwupdmgr local-install --json --allow-
 older --allow-reinstall https://fwupd.org/downloads/b1f9760a573b19f7d6eca4
 6cdc04389c89649c803943d5d5e1681fe60fb83f61-EPOSADAPT1x5T.cab
 b1f4e48ebea67bc554a73407241469583497b8e6
 Exit status: 1
 Duration: 0.028001070022583008

 stdout:
 {
 "Error" : {
 "Domain" : "FwupdError",
 "Code" : 8,
 "Message" : "No supported devices found"
 }
 }

This means that the file used for the update isn’t compatible with the specified device.

FAQs

How to find the board type of a Chromebook or Chromebox?

In the Chromebook/Chromebox, open Chrome and enter chrome://version in the
URL bar. In the info screen that will appear, the board type and variant will
show up in the Platform and Customization ID fields, respectively:

[image: _images/moblab-customization-id.jpg]

How to log into the DUT through SSH?

Reference: How to SSH to DUT without a password [https://chromium.googlesource.com/chromiumos/docs/+/main/tips-and-tricks.md#how-to-ssh-to-dut-without-a-password]

In some scenarios it could be useful or needed to run certain console commands
in the DUT or to retrieve data from it that can only be accessed through a
terminal interface. If the DUT is running a test ChromeOS release, it’ll have an
SSH daemon running so you can connect to it remotely.

Requirements:

	A Linux PC with an SSH client installed. If running Ubuntu, it can be
installed with the following command: sudo apt install ssh

	The Linux host must be able to ping the DUT. The easiest way to achieve this
is to connect the DUT and the Linux PC to the same local network. If the DUT
is connected to a Moblab through a wired connection you can also connect to
the Linux PC using a wireless connection

Assuming the host you’re connecting from is running Linux, in order to connect
to the DUT you’ll need to download the ChromeOS test keys and configure your ssh
client properly following these steps:

	Download the SSH keys from this link [https://chromium.googlesource.com/chromiumos/chromite/+/refs/heads/main/ssh_keys/]
and copy them to ~/.ssh in the Linux host

	Set the correct file permissions for the private key:

chmod 0600 ~/.ssh/testing_rsa

	Get the IP address of the DUT. If the DUT is connected to multiple networks,
we need the IP address of the NIC that’s connected to the Linux PC network.
To list the available connections and their IP addresses go to virtual
terminal 2 in the DUT ([Ctrl] [Alt] [→]) and type: ip -4 -br a

localhost ~ # ip -br -4 a
lo UNKNOWN 127.0.0.1/8
wlan0 UP 192.168.1.137/24
arc_ns0@if2 UP 100.115.92.129/30
arc_ns1@if2 UP 100.115.92.133/30
eth0 UP 192.168.231.25/24

In this example, if the DUT is connected to the Linux PC network through a
wireless link, then we can check that the PC can ping the DUT at
192.168.1.137.

	Add the following to ~/.ssh/config:

Host dut
 HostName $IP_ADDRESS
 User root
 CheckHostIP no
 StrictHostKeyChecking no
 IdentityFile ~/.ssh/testing_rsa
 ControlMaster auto
 ControlPersist 3600

Where $IP_ADDRESS is the IP address of the DUT

How to check the list of peripherals detected by fwupd?

If, for debugging purposes, you need to check the current list of peripherals
that fwupd is detecting, you can do so by running this command in a DUT
terminal:

fwupdmgr get-devices --json

How to stop the DUT from rebooting automatically

If the DUT was provisioned (updated) using Moblab, it will check for an Ethernet
link and it will reboot if it doesn’t find one. Make sure to keep the DUT
connected to the Moblab network using an Ethernet link.

When you are done testing with the Chromebook, reflash it with a recovery image
to prevent it from restarting continuously when not connected to a network
through the Ethernet port.

How to send debug information

In case something goes wrong when launching or running a test, you can get the
complete Moblab logs for debug through the Mobmonitor menu:

[image: _images/moblab-send-debug-info-1.png]

Then you can either download the logs or send them to your Cloud Storage bucket:

[image: _images/moblab-send-debug-info-2.png]

The logs will be compressed as a .tgz file.

Alternatively, if there’s an issue with Moblab you can report it by issuing a
buganizer ticket using this template and filling in the details.

Index

 _images/moblab-recovery-utility-3.png
Chromebook Recovery Uty » Step2 of 3 chromeos_13505.101.0_fizz-moblab_recovery_beta-channel_mp 2bin & X

Insert your USB flash drive or SD card

Select the media you'd ke to use.

USB SanDisk 3.2Gen1 - 58.4 GB]

Leam mor S - |

_images/moblab-recovery-utility-4.png
Chromebook Recovery Utilty chromeos_13505.101.0_fizz-moblab_recovery_beta-channel_mp2.bin £ X

Success! Your recovery media is ready

You can remove your recovery media now.

« To recover your Chromebook, plug the recovery media in to your
Chromebook.

« After recovery, you can erase your recovery media using this utiity.

Leam more croao o [T

_images/moblab-recovery-utility-1.png
. X,
Extensions
No access needed
These extensions don't need to see and change
information on this site.
© Adblocker for Youtube™ I

Chromebook Recovery Utility I

Recovery Extension Tool

Looper for YouTube I

P TTBar s :

£ Manage Extensions

_images/moblab-recovery-utility-2.png
Chromebook Recovery Utiity o

Erase recovery media

Use local image

Create a recovery media for your Chromeboot

Send feedback

Youll need an 8 GB or larger USB flash drive o SD card that you don't
mind erasing.

Leam mora m

_images/moblab-send-debug-info-1.png
f) Moblab Moblab Uptime: 2 hour(s) | Mobmonitor | J |

L1 manage DuTs

Start Time from: | yyyy-MV-dd HHmmss | to: | yyyy-MM-dd Himmsss || 1D suted | | Name
DUT Detall
PareniChid | tobs Staus
> Runsuite ' - Clear
© View Jobs
c | Aor© AutoRefresh
Job Detall

Queuedjobs:6 RunningJobs: 2 Completed Jobs: 62 Aborted jobs: 0 FailedJobs: 0 | AllJobs: 70
& configuration

5 e oy CESted o Upload
@ About O- % ™ Priority Time Job stat Status
63 hatchreleasermi1s- g: > UEUED |
=] 15372.0.0/performance cuj_quick/ui_QuickCheckCUJ2_basic_unlock Sogs
64 hatchreleaser1is- g: > UEUED |
=] 15372.0.0/performance cuj_quick/ul_VideoCUJ2_basic_youtube_web Sogs
65 hatchreleasermi1s- g: > UEUED |
(] 15372.0.0/performance.cuj_quick/ui_ EverydayMultiTaskingCU)_basic ytmusic Q

115825

_images/moblab-send-debug-info-2.png
Mobmonitor
last updated Mar 6, 2023, 12:15:12 PM Download Logs

moblab
@ healthy

Cloud Storage

@ diagnostic

Speed Test
Test the speed of the connection between the moblab and the cloud storage bucket

System

@ diagnostic

Disk Info
Getinformation on current disk usage, mounted filesystems and their mount points

_static/file.png

_static/favicon.png

_static/plus.png

_static/minus.png

_images/ac-adapter.png

_images/affiliate-change.png
Details Components Vendor History Problems (1) Limits

Vendor Affiliation

Care must be taken changing the assigned vendor of firmware as it gives the owner the ablity to change the target and even
delete the firmware.

If you move this firmware to an different vendor it will not be possible to edit the update details or move the firmware to

testing or stable.

Controlling Acme Corp.

vendor

_images/wireshark.png
secret.pcapng

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

V §W-:) [

RendEF IS E QAQQE

Apply a display filter ... <Ctrl-/> M

No. Time Source Destination Protocol |Length Info
6..9.215017 host 1.14.0 usB 36 GET DESCRIPTOR Request

6..9.215167 1.14.0 host usB 56 GET DESCRIPTOR Respong
6..9.215661 host 1.14.4 usB 27 URB_BULK in

6..9.215875 host 1.14.4 usB 27 URB_BULK in
6..11.7242..1.14.4 host usB 27 URB_BULK in

0016
0020
0030
0040
0050
0060
0070
0080
0090
0020
00bO
00c0
00do
00e0
000

01 61 60 Oe 0O 84 03 a2 07 00 00

@ 7 Padding added by the USB ca... (usb.capdata), 1,954 bytes Packets: 32039 - Displayed: 32039 (100.0%) _Profile: Default

_images/moblab-install-test-img-4.png
localhost login: root

Password:

localhost ™ # chromeos-install

cros-disks stop/waiting

This will install from '/dev/sda’ to '/dev/mmcblkl’.

This will erase all data at this destination: /dev/mmcblkil
Are you sure (y/N)? |§

_images/moblab-partner-portal.png
Goggle,

Home
Helsnsen oy Imoge s chamet

g - — - T
= ity © ot s oy
Sinary Components —] Clrotion=

et priate. |]

Device Reports. Vorsion __ Retesse _cramnel___sowa_tmageTvpe Fiens

stze)

Archive upload.
Report search
Device File Repo
Manage Files
Registration Codes
Request Codes
Test Effort
Request Test effort:
HWID
Request conflg update
Approved Vendor List
GPN Lookup.

« 4 rore > x

_images/moblab-install-test-img-2.png
@ English .

©

Let's step you through the recovery process

Select how you'd like to recover.
You can recover using external storage such as a USB drive or an SD card.

€83 Advanced options »
Q) Power off

Model. Use the arrow keys 10 navigate up or down

DUFFY-NISD Use the enter key to select an oplion

Help center

https:/google com/chromeos/recovery oler ¢ lz]l?]

_images/moblab-install-test-img-3.jpg
< Englsh »

Osveriaton s OFF

Pross SPACE ore nabe.

_images/architecture-plan.png
only metadata

internet

Updateetadatan)

custom
plugins

udev, sysfs, ESRT

pending.db

Bluetooth (bluez) IPMI & Redfish

JN— TR
‘ e ‘ ‘ Keyboard ‘ ‘AppsueamXML’ ‘ BMC ‘ ‘SAS/RAID’

nav.xhtml

 Table of Contents

 		
 Linux Vendor Firmware Service

 		
 Introduction

 		
 The Problem

 		
 System Architecture

 		
 GNOME Software

 		
 fwupd

 		
 Offline Updates

 		
 LVFS

 		
 Conclusions

 		
 Future Work

 		
 Related Projects

 		
 Getting an Account

 		
 Information to Supply

 		
 Vendor Groups

 		
 Adding Users

 		
 Trusted Users

 		
 Export Control

 		
 End User License Agreements

 		
 Alternate Branches

 		
 Metadata

 		
 MetaInfo Files

 		
 Using GUIDs

 		
 AppStream ID

 		
 Update Category

 		
 Allowed Category Values

 		
 Update Protocol

 		
 Device Integrity

 		
 Version Format

 		
 Device Flags

 		
 Adding Restrictions

 		
 Using CHID

 		
 Other Firmware Version

 		
 Parent Version

 		
 Sibling Version

 		
 Child Version

 		
 Client Features

 		
 Recommended Requirements

 		
 Restricting Direct Downloads

 		
 Embargoed and Sanctioned Countries

 		
 Source Requirements

 		
 Component Tags

 		
 Device Icons

 		
 Composite Hardware

 		
 Further Details

 		
 Release Urgency Values

 		
 Screenshots

 		
 Generic Components

 		
 Style Guide

 		
 <name>

 		
 <name_variant_suffix>

 		
 <branch>

 		
 <summary>

 		
 <description>

 		
 <release tag=”N1NET43W” …>

 		
 Uploading Firmware

 		
 Creating a Cabinet Archive

 		
 Using Linux

 		
 Using Windows

 		
 Signing The Archive

 		
 Remotes

 		
 Affiliated Vendors

 		
 Moving Firmware From ODM to OEM

 		
 Automatic Uploads

 		
 Firmware Testing

 		
 Online Tests

 		
 UEFI Capsule

 		
 DFU

 		
 Blocklist

 		
 Microcode

 		
 PE Check

 		
 End-to-End testing

 		
 Embargo remotes

 		
 Testing and stable remotes

 		
 Debugging Metadata

 		
 Signed Reports

 		
 Signed Reports With Token

 		
 Offline Reports

 		
 Claims

 		
 UEFI Shell

 		
 Old Microcode

 		
 Computrace

 		
 EDK Debug Agent

 		
 HP Sure Start

 		
 Intel BIOS Guard

 		
 Intel Boot Guard

 		
 Signed Firmware

 		
 Verified Firmware

 		
 Device Checksums

 		
 Vendor Provenance

 		
 Source URL

 		
 Virus Safe

 		
 FwHunt

 		
 End-of-Life

 		
 Software Bill of Materials

 		
 User Telemetry

 		
 Vendor Summary

 		
 Known Issues

 		
 Custom Protocol

 		
 Intellectual Property Concerns

 		
 Depending on a new library

 		
 Building fwupd

 		
 Security

 		
 UEFI UpdateCapsule

 		
 Privacy Report

 		
 Scope

 		
 Who is responsible for this policy?

 		
 Fair and lawful processing

 		
 Accuracy and relevance

 		
 Your personal data

 		
 Data security

 		
 Storing data securely

 		
 Data retention

 		
 Transferring data internationally

 		
 Subject Access Requests

 		
 Processing data

 		
 GDPR Provisions

 		
 Transparency of data protection

 		
 Firmware Vendor Information

 		
 Service Event Log

 		
 Firmware Download Log

 		
 Firmware Reports

 		
 Consent

 		
 Data portability

 		
 Right to be forgotten

 		
 Privacy by design and default

 		
 Data audit and register

 		
 Reporting breaches

 		
 Monitoring

 		
 Consequences of Failing to Comply

 		
 Offline Firmware

 		
 Deploy in immutable image

 		
 Mirror the public firmware

 		
 Using pulp-server

 		
 Using a helper script

 		
 Approved firmware

 		
 Export a shared directory

 		
 Downloading manually

 		
 Building a custom remote

 		
 Create your own LVFS

 		
 Product Certification

 		
 Introduction

 		
 Requirements

 		
 Conclusion

 		
 LVFS Releases

 		
 1.5.2 (2024-05-07

 		
 1.5.1 (2023-05-05

 		
 1.5.0 (2023-01-03)

 		
 1.4.0 (2022-05-24)

 		
 1.3.2 (2021-06-22)

 		
 1.3.1 (2021-04-06)

 		
 1.3.0 (2021-02-08)

 		
 1.2.0 (2020-06-09)

 		
 1.1.6 (2020-01-28)

 		
 1.1.5 (2019-11-15)

 		
 1.1.4 (2019-09-26)

 		
 1.1.3 (2019-08-06)

 		
 1.1.2 (2019-05-28)

 		
 1.1.1 (2019-05-21)

 		
 1.1.0 (2019-05-14)

 		
 1.0.0 (2019-05-02)

 		
 Firmware Embedded SBoM Specification

 		
 Acknowledgements

 		
 Preface

 		
 Glossary

 		
 Introduction

 		
 Embedding the SBoM

 		
 Benefits of Embedding

 		
 General Best Practices

 		
 Embedded SBoM Formats

 		
 Data Provided by the SBoM

 		
 Required Attributes

 		
 SBoM Information Flow

 		
 Using VEX Rules

 		
 Final Comments

 		
 Appendix

 		
 External SBoM Metadata

 		
 Wasted Space Concerns

 		
 Getting the Runtime SBoM

 		
 Converting the SBoM

 		
 Signing the SBoM

 		
 Using the LVFS

 		
 ChromeOS firmware testing

 		
 Prerequisites

 		
 Prepare Chrome OS for testing

 		
 Pre-conditions

 		
 Developer Mode

 		
 Pack a fresh firmware into the CAB format

 		
 Firmware files

 		
 Metadata files

 		
 Generation of the CAB file

 		
 Upload file to ChromeBook

 		
 Local test of the CAB file

 		
 Access to ChromeBook

 		
 Check if the device is supported by fwupd

 		
 Upgrade the device with development FW CAB file

 		
 Upgrade the device through internal repository

 		
 LVFS

 		
 Account

 		
 LVFS: remotes

 		
 CAB file repacking

 		
 LVFS: private remote

 		
 LVFS: Embargo remote

 		
 LVFS: Testing remote

 		
 LVFS: Stable remote

 		
 Persistent revisions

 		
 Signed Reports

 		
 USB device update record

 		
 Updates with LVFS

 		
 Update with GUI

 		
 Update with console

 		
 Test cases

 		
 Variables for test cases

 		
 Test the FW from the private remote

 		
 Test the FW from the embargoed remote

 		
 Test the FW from the testing remote

 		
 Test the FW from the stable remote

 		
 Test GUI update with Google internal remote

 		
 Test GUI update with embargoed remote

 		
 Test GUI update with testing remote

 		
 Test GUI update with stable remote

 		
 Recovery from the failed update with CLI

 		
 Test the FW reinstall

 		
 Appendix A: List of FWs used in this doc

 		
 ColorHug

 		
 How to run fwupd tests with Moblab

 		
 Overview

 		
 Before you begin

 		
 How to get a Partner Domain account

 		
 How to ask for access to ChromeOS images for specific boards

 		
 How to get a Moblab

 		
 Required hardware

 		
 Required software

 		
 Initial DUT (Chromebook) setup

 		
 Moblab setup

 		
 Other considerations and requirements

 		
 Test cases

 		
 Update a device firmware to the latest release

 		
 Downgrade a device firmware to the previous release

 		
 Install a firmware version

 		
 Install a firmware file

 		
 How to verify the test results

 		
 How to get debug information

 		
 FAQs

 		
 How to find the board type of a Chromebook or Chromebox?

 		
 How to log into the DUT through SSH?

 		
 How to check the list of peripherals detected by fwupd?

 		
 How to stop the DUT from rebooting automatically

 		
 How to send debug information

_images/audio-headphones.png

_images/audio-headset.png

_images/archive-basename.png
Extract | + hughski-colorhug2-2.03.cab[readonly] | Q

< > @ Location: [/

Name

& firmware.bin
firmware.inf

o/ firmware.metainfo.xml

Size Modified

157 kB 26 February 2018, 12:52
489 bytes 26 February 2018, 12:52
16 kB 26 February 2018, 12:52

_images/audio-card.png

_images/auth-fingerprint.png

_images/uninterruptible-power-supply.png

_images/auth-otp.png

_images/thunderbolt.png

_images/audio-input-microphone.png

_images/upload-for-affiliate.png
Uploaad Firmware

Uploading firmware is covered by our legal agreement.

Upload for Hughski Limited
vendor Acme Corp.
Upload to remote Private (secret)
toall
Firmware file o file chosen

Upload

of the vendor group)

_images/audio-speakers.png

_images/update-image.png
ColorHug

Please turn the device off and back on again for the update to complete

C) (

0K

_images/usb-receiver.png
?))

_images/usb-hub.png

_images/banner.png
Linux Vendor

Firmware Service

_images/video-display.png

_images/user-perms.png
Display Name Richard Hughes
Account Warning

Account Type Enabled, can change own password

Attributes Account is a robot used for automated firmware uploading only
‘) Read-only access to all firmware and associated reports in the hughsk i group
‘) Allowed to modify all the firmware uploaded to the hughsk i group
Allowed to add, remove and modify users in the hughski group

() Allowed to move firmware to the public testing and stable remotes

_images/testing-failure-pecheck.png
amonth ago

_images/testing-failure-microcode.png
v0.0.31 2 days ago

_images/testing-failure-uefi-capsule.png
Flags: 0x10000
CapsuleInageSize: 0x93f5a0
GUID: fOfad8es-000c-4743-8ffd-16e0918c998e not found in de6c7504-elde-45b0-badd 5091906077

HeaderSize: x50

_images/battery.png

_images/camera-photo.png

_images/chromeos-lvfs-1.png
B LVFs D O D &

* USB:0x1038

A Home ~ * USB:0x1915

§ Firmware v 1 If you need to add another vendor ID then please file an issue with further information.

Upload new

State - Private
State : Embargo Upload

State :: Testing

mware

Uploading firmware is covered by our legal agreement.

State :: Stable.
State :: Deleted Select firmware file

e 2ughsklrco\orhugrl.Z.Bcab
State : Al

o Upload for vendor

Devices 3 Collabora

Metadata
&) Telemetry v
B Documentation v

Upload to remote

4 Private (secret)

Embargoed (available to all members of the vendor group)

S E=:3

Previous Uploads

Uploaded Filename Status

_images/chromeos-lvfs-2.png
| LVFS

Home

& Fimuare

Upload new

state
state
state
state
state
state
state

User

Private
Embargo
Testing
Stable
Deleted
Events
Al

A

Devices

Metadata

‘& Telemetry

8 Documentation

Upload Firmware
Uploading firmware s covered by our legal agreement.

Select firmuware file
No file selected.

Upload for vendor

Collabora

Upload to remote

Private (secret)

Embargoed (available to all members of the vendor group)

Upload

Previous Uploads

Uploaded Filename. Status
2023-03-20 adad5d0a308b7a30ce179114e7d6c3afo2f 1
16:15:02 10880fa0bcdbfabff58846bce-hughski-

4 seconds colorhug-1.2.6.cab 8

9

_images/camera-video.png

_images/camera-web.png

_images/chromeos-lvfs-5.png
& LVFS wnrrusTED B3

Details Tests Components Vendor Problems Limits Downloads

4 Home ~
& Firmware v Private Embargo Testing Stable

Upload new

State :: Private Firmware is Firmware is Firmware is Firmware is

Sl gl only available available to available to available to

State :: Testing to your specific anyone in your thousands of millions of

State :: Stable user. vendor group. public testers. public end-

State :: Deleted users.

State :: Events et

denied
State :: All

User = All

Devices

Known Issues
Metadata Actions

o Telemetry v Firmware can be pushed to a specific remote based on a predefined schedule. Only

firmware with no detected problems will be auto-pushed.

B Documentation v
mm/dd/yyyy Stable v Add

_images/chromeos-lvfs-6.png
@ LVFS

4 Home

4 Firmware
Upload new
State :: Private
State :: Embargo
State :: Testing
State :: Stable
State :: Deleted
State :: Events
State :: All
User = All
Devices
Known Issues

Metadata

“A) Telemetry

B Documentation

>

ANALYST | MANAGER | UNTRUSTED ;

users.
denied mission
denied

Actions

Firmware can be pushed to a specific remote based on a predefined schedule. Only
firmware with no detected problems will be auto-pushed.

mm/dd/yyyy Stable v Add

Action Timestamp User Ta rget
- 2022-07-29 denis.pynkin@col...
13:01:18
Uploaded 2022-07-25 denis.pynkin@col... prlvate

00:57:17

_images/chromeos-lvfs-3.png
= LVFS

A Home

& Firmware

Upload new

State :: Private

State
State
State
State
State
State

User

Embargo
Testing
Stable
Deleted
Events
Al

A

Devices

Metadata

&) Telemetry

B Documentation

Search firmware.

Firmware in ‘private’ (13)

#” Collabora ColorHug Device Update

Version 1.2.6.1 uploaded 16 hours ago

=

Version

=

Version

0

Version

0

Version

0

Version

(6]

Device Update

uploaded 7 months ago

Device Update

uploaded 7 months ago

Device Update

uploaded 1 year, 1 month ago

Device Update

uploaded 1 year, 1 month ago

Device Update

uploaded 1 year, 2 months ago

Device Update

b
e

C)

_images/chromeos-lvfs-4.png
B LVFs o 3

Details ~ Target = Tests ~ Components ~ Problems — Downloads = Assets

A Home ~
Fimware v .

2 Overview
Upload new

ColorHug 1.2.6.1 has been downloaded 1 fimes_
Open Link in Ne

State :: Private

State : Embargo The firmware is | [USNRITHAN
State : Testing B————
State :: Stable Coer 1

Open Link in Ne
State :: Deleted

State :: Events

State = All ; Save Link t
User : All Details Copy Li
Devices hughski-colorh R
Metadata frederic.danis@
‘A" Telemetry @ The firmware is now owned by collabora.
B Documentation v

LVFS © 2015 Richard Hughes
Linux Vendor Firmware Service Project a Series of LF Projects, LLC

_images/chromeos-lvfs-client-certificates.png
B LVFS

A Home

& Firmware

Telemetry

B Documentation

mTep | Anauyst | unTrusTeD I

When my firmware is demoted due to reported problems.

Client Certificates

Client certificates are used to verify that a report was sent from a specific user or machine
and can be used to automatically set device checksums

The /var/1ib/fuupd/pki/client . pen certificate is automatically created when using
fwupd 1.2.6 or newer.

Added Signature

2023-03-23 320ea02bf@d4bedc46620ble7ea5231129a8db69 Remov
08:20:40 e
2023-03-23 6a347713b563292879034707d497b6385466e01 Remov
08:25:12

e

Upload Certificate

User Tokens

User tokens are used to allow automated tasks to perform actions with your account.

_images/chromeos-lvfs-profile-settings.png
B LVFS

A Home
Dashboard
4 Fimware

Telemetry

B Documentation

Search firmware.

Downloads over the last 30 days

Downloads Devices

32 firmware files from YYou have 30 different
Collabora have been devices supported on
downloaded 469 times! the LVFS.

Telemetry » Seeall

Recently uploaded firmware

Collabora ColorHug - 1.2.6.1

Show all

LVFS © 2015 Richard Hughes
Linux Vendor Firmware Service Project a Series of LF Projects, LLC

[ourro Lt L ywmosreo P

Brofile Settings

Logout

Users

5 users are in your
organization.

e+ Em
1

_images/chromeos-lvfs-7.png
B LVFS

4 Home

4 Firmware
Upload new
State :: Private
State :: Embargo
State :: Testing
State :: Stable
State :: Deleted
State :: Events
State :: All
User = All
Devices

Known Issues

A Telemetry

B Documentation

ANALYST | MANAGER | UNTRUSTED ;

Stable firmware.xml.gz

This remote contains firmware available to millions of end users.

Testing firmware-testing.xml.gz

This remote contains firmware available to thousands of end users who have
manually enabled the 1vfs-testing remote.

Collabora Embargo

firmware-9556ae267f7dcd30f5c0d7c65cT7bob66d5b3697.xml.gz
This

remote contains firmware available only to us: Im@mimarpesimseal
remote. To complete an end-to-end test sa{e collabora-embargo.conf Q) /etc/fwupd
/remotes.d if you are using the distribution ve D@
/current/etc/fwupd/remotes.d for the Snap version.

e vendor

root/snap/fwupd

Do not share the embargo URL with external users as the private firmware should
remain hidden from the public. You also may need to do fwupdmgr refresh on each
client to show new updates.

The contents of this remote are also available as a PULP_MANIFEST using a previously
generated user token. See the LVFS documentation for more information on how to
use sync-pulp.py with a token.

_images/chromeos-rootfs-2.png
chronos@localhost ~ $ sudo /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification --partitions 2

make_dev_ssd.
make_dev_ssd.
3210.bin

make_dev_ssd.
make_dev_ssd.
make_dev_ssd.

sh:
sh:

sh:
sh:
sh:

INFO:
INFO:

INFO:
INFO:
INFO:

Kernel A: Disabled rootfs verification.
Backup of Kernel A is stored in: /mnt/stateful_partition/cros_sign_backups/kernel_A_20220705_00

Kernel A: Re-signed with developer keys successfully.
Successfully re-signed 1 of 1 kernel(s) on device /dev/mmcblkl.
Please remember to reboot before updating the kernel on this device.

_images/chromeos-settings-available-update.png
Settings Q Search settinas

@ Network

Bluetooth Firmware updates for external devices

Connected devices

& reck for updates
Accounts Version

[

[

Personalization

[

Search and Assistant

[

Security and Privacy

[

Apps

Advanced

About Chrome0S

Unromeus Is'made PoSsinie Dy adaIoONal OPen SoUrce SoTware:

Terms of Service

OO wWEO®OOCO s w

_images/chromeos-refresh.png

_images/chromeos-rootfs-1.png
chronos@localhost ~ $ sudo /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification
ERROR: YOU ARE TRYING TO MODIFY THE LIVE SYSTEM IMAGE /dev/mmcblkil.
The system may become unusable after that change, especially when you have

some auto updates in progress. To make it safer, we suggest you to only
change the partition you have booted with. To do that, re-execute this command

as:

sudo /usr/share/vboot/bin/make_dev_ssd.sh --remove_rootfs_verification --partitions 2

If you are sure to modify other partition, please invoke the command again and
explicitly assign only one target partition for each time (--partitions N)

make_dev_ssd.sh: ERROR: IMAGE /dev/mmcblkl IS NOT MODIFIED.

_images/chromeos-settings-fw-uptodate.png
®

Settings

Bluetooth

Connected devices

Accounts

Personalization

Search and Assistant

Security and Privacy

Apps

Advanced

About Chrome0S

Q Search settinas

Your is now up to date

Firmware has been updated to version

Terms of Servic

OQOWEEO0COO® & @

eck for updates

[

[

2]

[

[

8 o038

_images/chromeos-settings-fw-error.png
®

Settings

Bluetooth

Connected devices

Accounts

Personalization

Search and Assistant

Security and Privacy

Apps

Advanced

About Chrome0S

Q Search settinas

Can't update

Something went wrong. Try again.

Terms of Servic

OQOWEEO0COO® & @

eck for updates

[

[

[

[

[

8 o012

_images/chromeos-settings-fw-update.png
Settings Q, Search settings

Network About ChromeOS

Bluetooth

@ Google ChromeOS

Connected devices

Version 103.0.5060.115 (Official Build) (64-bit) Check for updates
Accounts

) See what's new
Device

Get help with Chrome0OS
Personalization

Report an issue
Search and Assistant

Diagnostics

Security and Privacy

Firmware updates
Apps ul

Additional details
Advanced

About Chrome0S
Google Chrome0S

Copyright 2022 Google LLC. Allrights reserved

Chrome is made possible by the Chromium open source project and other open source software.
Chrome0s is made possible by additional open source software

Terms of Service

OO wWO®O0OOCO s w

_images/component-checksums.png
Overview Device Checksums Update Details Requirements

Al valid PCRO values should be used for UEFI firmware.

Type Value

SHA1 12d9c307380c4410fddfdb613b5dfha8h336cT49

12d9c307380c4410fddfdb613b5dfba8b336cf49

Add hashes here to define a device checksum for a specific machine.

Search Keywords

_images/component-requirements.png
Device Software Versions

Require bootloader version: Any
Require existing firmware Any
version:

Computer Software Versions
Require fwupd version: Any

Computer Hardware IDs

No restrictions to a specific machine.

b0f340b1-361e-559-b691-bc46d0921ead

Add GUIDs here to restrict the update to a specific machine.

_images/chromeos-settings-network.png
Settings Q, Search settings

<«

Bluetooth
'ﬂ Connected

Connected devices
Synced with other devices on your account. Learn more

Accounts
Prefer this network

Device

Hidden network

/A Using a hidden network isn't recommended for security reasons.
Personalization

Automatically connect to this network
Search and Assistant

1P Address

Security and Privacy 1921681015

Apps Advanced

Advanced Networkc

Proxy
About Chrome0S

'@9.96@0‘? B 10 wpnnsz

_images/colorimeter-colorhug.png

_images/device-tested-by.png
Tested By

{8 LVFS on LENOVO ThinkPad X1 Carbon 7th 21 hours ago

The vendors testing the update provide no warranty of any kind (express or implied), including but not limited to the warranties of merchantability, fitness for a particular
purpose or non-infringement. In no event shall these vendors be liable for any claim, damages or other liability.

_images/dock-usb.png

_images/computer.png

_images/confidental-issue.png
This issue is confidential

_images/dock.png

_images/moblab-verify-5.png
Test Results

Autotest View

Autotest View (Google Lab)

CTS View

CTS View (Google Lab)

Upload CTS Results

Storage Qual View

PVS View

Perf CUJ/ MTBF View
Moblab Remote Console

Moblabs

DUTs

Moblab Configuration
Tools

CLFinder

Changelog

Factory Bundle

Autotest Test Suite Details @

Started Time: Wednesday, February 22nd 2023, 10:4122 am CET
Last Updated: Wednesday. February 22nd 2023, 11:02:54 am CET

Summary
Overview Results Breakdown
Board hatch PassedTests 1
Model nightfury Aborted Tests 0
ChromeOS 15357.00 Warning Tests 0
suite fwupd_update FailedTests 0
Moblab Hostld OWGATFQI22088016 Skipped Tests 0
Moblab Install Id b324a74e82ac11ed91180242c0a86410 OtherTests 0

Non-Passed Tests

TestName JobLabel Runs Status Reason Actions

Hide Passing Tests

Passing Tests

Test Name Job Label

Runs Status Actions

fwupd_FirmwareUpdate hatch-release/R112-15357.0.0/fwupd_update/fwupd_FimwareUpdate

Show Skipped Tests

s (PR Looe 1]

_images/drive-harddisk-ieee1394.png

_images/modem.png

_images/moblab-verify-6.png
Google Cloud Select a project ¥ ‘ ‘ Search (/) for resources, docs, products, and more ‘ Q_ search ‘ a ® °
Cloud Storage & Bucket details C/REFRESH [E) HELP ASSISTANT @) LEARN
Buckets Buckets > chromeos-moblab-collabora > results > OWGATFQI22088016 > b324a74e82act1ed91180242c0a86410 > 1059-moblab > 192
Monitoring UPLOADFILES ~ UPLOADFOLDER CREATEFOLDER TRANSFERDATA ~ MANAGEHOLDS ~ DOWNLOAD DELETE
& Settings Filter by name prefix only v = Filter Filter objects and folders @ showdeleteddata I
O Neme size Type Created @ Storage class.
O B atosen execute 208 application/octetstream Feb22,2023,11:03:39 A Standard k4
O 8 paselock 228 application/octetstream Feb22,2023,11:03:39AM Standard k
O 8 parserexcante 208 application/octetstream Feb22,2023,11:03:39AM Standard k
O 8 coo 9248 application/octetstream Feb?22,2023,11:03:39AM Standard k
O 8 conolsy 2268 application/octetstream Feb22,2023,11:03:39AM Standard k
O e debuy - Folder - -
O = fwupd FirmwareUpdate/ - Folder - -
O = hostinfo_store/ - Folder - -
O m hostkeyvals/ - Folder - -
O B bsenalize 18KB application/octetstream Feb22,2023,110339AM Standard k
O Bk 2538 application/octetstream Feb?22,2023,11:03:39AM Standard k
O e - Folder - -
W Marketplace
O 8 resut summaryhtml 34KB application/octetstream Feb?22,2023,11:03:39AM Standard k
Release Notes. O 8 seus 1678 application/octetstream Feb22,2023,110339AM Standard k
O 8 sstslog 2158 application/octetstream Feb22,2023,11:03:39AM Standard k
< O masysinfor - Folder - -

_images/network-vpn.png

_images/multimedia-player.png

_images/moblab-setup-6.png
L Manage DUTs < s
DUT Detail
> Run Suite

@ View Jobs

Job Detail

£ Configuration

@ About

vy FAFT

Select model
nightfury -

Select build target:
hatch -

Select milestone:

12 -
Select build:
15357.0.0 -

Pool (Optional)

Select Chromebook(DUT) IP Address:

192.168.23125 -
Select sute:

fwupd_install file -
Select a device id

Integrated Webcam? -
File

https://fwupd.org/downloads/bbbges8a0e21c

Device Info:

* Deviceld:
080460be0f1of128413f8160222643960078018

* Name: Integrated Webcam?

« Vendor: ACME Corp,

« Current FW version: 1.2.4

« Current bootloader FW version: 0.1.2

* Guid: b585090a-003e-5270-895-3705a179a43

« Flags: updatable, require-ac, supported,
registered, can-verify, can-verify-image,
unsigned-payload

FWUPD

GTs

Memor >

_images/moblab-setup-5.png
L Manage DUTs < s
DUT Detail
> Run Suite

@ View Jobs

Job Detail

£ Configuration

@ About

vy FAFT

Select model
nightfury -

Select build target:
hatch -

Select milestone:

12 -
Select build:
15357.0.0 -

Pool (Optional)

Select Chromebook(DUT) IP Address:

192.168.23125 -
Select sute:
fwupd_install version -

Select a device id
Integrated Webcam? -

124

Device Info:

* Deviceld:
080460be0f1of128413f8160222643960078018

* Name: Integrated Webcam?

« Vendor: ACME Corp,

« Current FW version: 1.2.4

« Current bootloader FW version: 0.1.2

* Guid: b585090a-003e-5270-895-3705a179a43

« Flags: updatable, require-ac, supported,
registered, can-verify, can-verify-image,
unsigned-payload

FWUPD

GTs

Memor >

_images/moblab-verify-2.png
Index of /results/1057-moblab/

v
192.168.231.25/ 22-Feb-2023 09:46

_images/moblab-verify-1.png
Moblab Uptime: 2 minute(s) | Mobmonitor | il |

L Manage DUTs

Start Time from: ~ 2023-02-22 10: to: | yyyy-MM-dd HH:mm:ss D Suite ID Name
DUT Detail
Parent/Chia Jobs Status
» Runsuite - - Clear
@ Viewjobs
@ Abort(0) @@ Auto Refresh
Job Detail

QueuedJobs:0 Runningjobs:2 Completed Jobs: 0 Aborted Jobs: 0 Failed Jobs: 0~ All Jobs: 2
£ Configuration

Job 3 . upload
@ Avout o- Name Priority Created Jobstatus UPO20 1ogs
hatch-release/R112- 2023-02-22
1057 15357.0.0/fwupd_update/fwupd_FirmwareUpdate DEFAULT 00443 RESETTING B
hatch-release/R112-15357.0.0- 2023-02-22
199 test suites/control.fwupd_update DEFAULT 404440 RUNNING B

lemsperpage: 20 v 1-20f2

_images/moblab-verify-4.png
Test Results
|
Autotest View (Google Lab)
CTS View
CTS View (Google Lab)
Upload CTS Results
Storage Qual View
PVS View
Perf CUJ/ MTBF View
Moblab Remote Console
Moblabs
DUTs
Moblab Configuration
Tools
CLFinder
Changelog

Factory Bundle

Autotest Suite Results Summary @

Last Updated: Wednesday. February 22nd 2023, 11:03:44 am CET

Board Model

Select...

= - Chrome 0S
Milestone | Select... Version

s Aot Wi e s O

Board

Model

Suite | Select,

Milestone Chrome 0S fwupd_downgrade fwupd_installfle fwupd_install_version fwupd_update provision
hatch nighttury M112 1535700

hatch nightfury M112 15356.0.0 []

hateh nghttury 112 1s3ss00] [] B

hatch nightfury M112 15353.0.0 B

hateh mghttury 112 1535000] B B B
hatch nightfury M112 1534900 B

rammus shyvana M112 1534200 B
hatch nighttury M1z 1533800

rammus shyena M1z 1533800

_images/moblab-verify-3.png
Index of /results/1057-moblab/192.168.231.25/

22-Feb-2023 -

date/ 22-Feb-2023 -
host_info_store/ 22-Feb-2023 -
host_keyvals/ 22-Feb-2023 -
Lucifer/ 22-Feb-2023 -
Sysinfo/ 22-Feb-2023 -
control 22-Feb-2023 1766
control.sry 22-Feb-2023 316
job.serialize 22-Feb-2023 2181
Keyval 22-Feb-2023 377
result_sumnary.htnl 22-Feb-2023 71K
status 22-Feb-2023 512
Status.log 22-Feb-2023 610

_images/drive-harddisk.png

_images/drive-multidisk.png

_images/drive-harddisk-system.png

_images/drive-harddisk-usb.png

_images/get-topology.png
[hughsie@hughsie-works fwupdmgr get-topology

20EQS64NOC System Firmware 2c1302731806a0e0d57¢c377d99e18dae56351413
Dell dock 130W DP ef3b3397619993975d045fa2cd00f379F823d0b8
RTS5487 in Dell dock €23d967939a8badce8b91fc618849f17482b8efd
RTS5413 in Dell dock fbda92b3b414094763dd6F499db94bdae3f810ee
Package level of Dell dock 7bf361a43bd87062755675ce6285472728a4ed50

VMM5331 in Dell dock ObOfcf7385e675a1772FfdaB850694c16ad8d81a77a

_images/gnome-software2.png
ColorHugALS

ColorHugALS Firmware
Firmware for the ColorHug Ambient Light Sensor

Updating the firmware on your ColorHugALS device improves performance and adds new features.

This stable release fixes the following bugs:
« Fix the return code from GetHardwareVersion
« Scale the output of TakeReadingRaw by the datasheet values

Website
Details
Version 3.02 License GPL-2.0+
Never Size 9.7 kB
None

Hughski Limited

_images/drive-optical.png
\J

_images/drive-removable-media.png

_images/gpu.png

_images/moblab-setup-2.png
Moblab Uptime: 1

L0 Manage buTs

nrollm Firmwan Is/Attributes
DUT Detail
Provision DUTs
» Run Suite
Selected0or1
© View Jobs
O- our wAc Bur Labels/Attrbutes
Job Detail

arc boardhateh r50-
£ configuration Provision DL ersoput. croswversion:h

cts abixB6 . cpu
intiury osicros serv
(HWID: NIGHTFURY-ZSLY

(job_repo_urt: hitpi192.

\15369.0 0/autotest/pack
rial_number: 4KSX9F

@ About [0 19216823125 00:04c3b31s8 hai

Pick from available builds

_images/moblab-setup-1.png
ST . [—

T |t || e |

» rnsune
oo c
o D7 [-
@ contguon o
- st
po nrtyis
v 350485
R T ——— ==
oy ey s . ity
e i

_images/moblab-setup-4.png
Moblab Uptime: 2 minute(s) | Mobmonitor

L Manage DUTs <

cTs cuy FAFT FWUPD G
DUT Detail
> Run Suite
© View Jobs Select model
nightfury -
i Select build target
Job Detail seles i}

. Select milestone:
£ Configuration

112 -
Select build:
@ About 15357.00 -

Pool (Optional

Select Chromebook(DUT) IP Address:
192.168.231.25 -

Select suite:
fwupd_update -

Select a device id
Integrated Webcam? -

Device Info:

Deviceld:
08d460be0f110f128413f816022264300078018
« Name: Integrated Webcam?

Vendor: ACME Corp.

Current FW version: 1.22

Current bootloader FW version: 0.12

Guid: b5850902-003e-5270-89d5-3705a17f0a43
Flags: updatable, require-ac, supported,
registered, can-verify, can-verify-image,
unsigned-payload

_images/moblab-setup-3.png
Moblab Uptime: 2 minute(s)

L Manage DUTs < - o . oo (
DUT Detail
P Run Suite
@© ViewJobs Z::\;\Tymde\ B
Job Detail selectbuld trger .

Select milestone:

£ Configuration

112 -
Select build:
@ Avour 1535700 -

Pool (Optionaly:

Select Chromebook(DUT) IP Address:

192.168.231.25 -
Select sute:
Select a suite -

I I

_images/drive-harddisk-solidstate.png

_images/input-tablet.png

_images/input-touchpad.png

_images/input-keyboard.png

_images/input-mouse.png

_images/issues-all.png
Known Issues

Priority Name

0 Arch Linux EFI [link]

0 Test Issue [link]

Create a new issue

Issue URL

Description

EFlis not set up by default

Matches only on the ThinkPad of Richard

Group

admin

hughski

_images/known-issue.png
Update failure is a known issue, visit this URL for more information: https://github.com/hughsie/fwupd/wiki/Common-Problems

Proceed with upload? [Y|n]: y
[hughsie@localhost build (master %)1s I

_images/issue-conditions.png
Details Conditions

Issue Conditions

Key

Distrord
Plugin
UpdateError

Key.

Compare

6lob

Value

arch
uefi
“No such file or directory*

Value.

_images/issue-details.png
Details Conditions

Issue Details
URL:

Linux

Group:
admin
Name:
Arch Linux EFI
Description:

EF1 is not set up by default

_images/report-offline.png
Details ~ Target ~ Tests ~ Components =~ Vendor =~ Problems =~ Reports — Assets

Add Offline Report
Upload a . fuupdreport file generated from fuupdngr report-export --sign, available in fwupd v1.9.11 and later versions.

| Browse... | No file selected.

_images/scanner.png
(1)

_images/sbom-flow.png
BIOS Vendor

Platform Vendor

Source Cod CPU microcod FSP/AGESA/OpenSIL CSME/PSP GbE CPU Microcode VEX
< Source Code VEX > +sr>n;>[<c . v:det +emb ::C:CS\ATID +embedded ;ew"u: +embedded USWID +USWID FSPIAGESA VEX
metadata embedded ut embedded u embedded u u CeMEIPSP VEx
$$
v ODM or OEM
EFI Binaries
+COSWID
BIOS Partition H
+USWID
5% firmware build tool
Firmware ROM Image
+embedded uSWID
+Optional defragmented SBoM H
Source Code Vi Exported SBoM
ource Code SPDX, CycloneDX etc
v LVFS Webservice
$%2 Firmware Capsule
SBoM Report H
Local User v
SPI Chip
+embedded uSWID

extractor

SPI SBOM

System Vulnerability Report

_images/telemetry-vendor.png
Al Last 30 days Last 6 months

Telemetry for group hughski

Hardware Version Downloads
YV A vV A
ColorHug2 207 510

ColorHug 126 284

Success Failed

VA Y A
10 1
2 1

Triaged
V A

_images/screenshot-lineart.png
Prepare 8Bitdo SFC30

Unplug the controller, hold down L+R+START for 3 seconds until
both LEDs are flashing then reconnect the controller.

Cancel Install

_images/testing-failure-dfu.png
Nitrokey Storage v0.50 a minute ago

_images/testing-failure-blocklist.png
7 months ago

_images/report-cert.png
The QA URL for this report is https://fwupd.org/Lvfs/reports/1/share/40338ceb-b966-deae-adae-9c32edfccass which can be used for certification
submissions. Requesting data from this URL requires authentication using a username and token.

Uploader sign-test@fwupd.org (LVFS)
CompileVersion(org.freedesktop.fwupd) 1.6.2
CpuArchitecture X86_64

Distrold fedora

_images/release-source-url.png
Source URL it il 126

The source URL listed here should refer specifically to the code used to built this exact firmware release.

_images/report-fw.png
Details Components

Filename

Current Target

Submitted

Signed

Vendor ID

Uploader

Uploaded from

Version

Downloads

Reports

Vendor

History Limits Recent Downloads Past Year Past Month

Logitech-Unifying-RQR12.07_B0029.cab

stable (moved 1 year, 3 months ago)

2017-05-09 10:27:53

2017-05-09 09:27:53

logitech

RQR12.07_B0029

&4 295 1@ 14 & 10

&1 Reports

KB Reports

Delete

_images/report-details.png
Timestamp State Full Report

2018-03-11 01:45:30 Triaged AppstreamGlibversion=0.7.6, BootTime=1520731617, CpuArchitecture=x86_64,
DistroId=fedora, Distrovariant=workstation, DistroVersion=27, FirmwareId=167,
Flags=34, FwupdVersion=1.0.5, GUsbVversion=0.2.11, Guid=77d843f7-682c-57e8-8e29-
584f5b4f52a1, KernelvVersion=4.15.6-300.fc27.x86_64,
MachineId=6091866777512c9c559d79aa9f1ab0e86efbed444b391e34292f9bThdeb0255d,
Plugin=unifying, UpdateError=failed to run update_detach() on unifying: request timed
out, UpdateState=failed, VersionNew=RQR12.07_B0029, Version0ld=RQR12.03_B0025

2018-03-28 09:53:26 Failed AppstreamGlibversion=0.7.4, BootTime=1522224750, CpuArchitecture=x86_64,
DistroId=debian, FirmwareId=167, Flags=34, Fwupdversion=1.0.6, GUsbVersion=0.2.11,
Guid=77d843f7-682c-57e8-8e29-584f5bh4f52a1, Kernelversion=4.15.9,
MachineId=d804ad6la6b239e6bc44eT31186ea614b918efd237eb7f57f5a85be2bf8r1480,

Plugin=unifying, UpdateState=failed, VersionNew=RQR12.07_B0029,
Version0ld=RQR12.01_B0O0O19

_images/input-dialpad.png

_images/input-gaming.png

_images/moblab-customization-id.jpg

_images/moblab-extension-icon.png

_images/media-removable.png

_images/media-tape.png

_images/moblab-install-test-img-1.jpg
@ ervome

Please insert a recovery USB stick or 5D card.

_images/moblab-fullscreen-icon.png

_images/moblab-gear-icon.png

_images/prodcert-complicated.png

_images/printer.png

_images/prodcert-title.png
fwupd
Q frlendly firmware

_images/prodcert-signed.png

_images/profile-certificates.png
Client Certificates

Client certificates are used to verify that a report was sent from a specific user or machine and can
be used to automatically set device checksums.

The /var/1ib/fuupd/pki/client.pen certificate is automatically created when using fwupd 1.2.6 or
newer.

Added Signature

2021-07-02 16:58:53 51ddd8esbfd89113fe7e0ac58658bco8be332e45 Remove

2021-07-02 14:06:44 43d8d53dbdb4e2028e444e4920105bfdbbff2a75

Upload Certificate

_images/prodcert-unsigned.png

_images/network-wireless.png

_images/network-wired.png

_images/phone.png

_images/pda.png

_images/printer-network.png
i

_images/media-floppy.png

_images/media-optical.png

_images/media-flash.png

